solution finder

11 May 2019

Urine-Diverting Dry Toilet (UDDT)

Applicable to

Application level

Not applicable

Management level

Not applicable

Inputs

Dry Cleansing Materials Anal Cleansing Water
Urine Faeces

Outputs

Anal Cleansing Water
Urine Faeces
+ Dry Cleansing Materials
Author/Compiled by
Eawag (Swiss Federal Institute of Aquatic Science and Technology)
Martin Wafler (seecon international gmbh)
Dorothee Spuhler (seecon international gmbh)
Executive Summary

A urine-diverting dry toilet (UDDT) is a toilet that operates without water and has a divider so that the user, with little effort, can divert the urine away from the faeces.

Advantages
Does not require a constant source of water
No real problems with odours and vectors (flies) if used and maintained correctly (i.e., kept dry)
Can be built and repaired with locally available materials
Low capital and operation costs
Suitable for all types of users (sitters, squatters, washers, wipers)
Disadvantages
Prefabricated models not available everywhere
Requires training and acceptance to be used correctly
Is prone to misuse and clogging with faeces
The excreta pile is visible
In Out

Urine, Faeces, Anael Cleansing Water, Dry Cleansing Material

Urine, Faeces, Anael Cleansing Water, Dry Cleansing Material, Fertiliser, Compost/Biosolids

Factsheet Block Title
Introduction
Factsheet Block Body

The UDDT is built such that urine is collected and drained from the front area of the toilet, while faeces fall through a large chute (hole) in the back. Depending on the Collection and Storage/Treatment technology that follows, drying material such as lime, ash or earth should be added into the same hole after defecating.

Factsheet Block Title
Design considerations
Factsheet Block Body

It is important that the two sections of the toilet are well separated to ensure that a) faeces do not fall into and clog the urine collection area in the front, and that b) urine does not splash down into the dry area of the toilet. There are also 3-hole separating toilets that allow anal cleansing water to go into a third, dedicated basin separate from the urine drain and faeces collection. Both a pedestal and a squat slab can be used to separate urine from faeces depending on user preference.

Urine tends to rust most metals; therefore, metals should be avoided in the construction and piping of the UDDT. To limit scaling, all connections (pipes) to storage tanks should be kept as short as possible; whenever they exist, pipes should be installed with at least a 1% slope, and sharp angles (90°) should be avoided. A pipe diameter of 50 mm is sufficient for steep slopes and where maintenance is easy. Larger diameter pipes (> 75 mm) should be used elsewhere, especially for minimum slopes, and where access is difficult. To prevent odours from coming back up the pipe, an odour seal should be installed at the urine drain.

Factsheet Block Title
Health aspects/acceptance
Factsheet Block Body

The UDDT is not intuitive or immediately obvious to some users. At first, users may be hesitant about using it, and mistakes made (e.g., faeces in the urine bowl) may deter others from accepting this type of toilet as well. Demonstration projects and training are essential to achieve good acceptance with users. For better acceptance of the system and to avoid urine in the faeces collection bowl, the toilet can be combined with a urinal, allowing men to stand and urinate.

Factsheet Block Title
Operation & maintenance
Factsheet Block Body

A UDDT is slightly more difficult to keep clean compared to other toilets because of both the lack of water and the need to separate the solid faeces and liquid urine. No design will work for everyone and, therefore, some users may have difficulty separating both streams perfectly, which may result in extra cleaning and maintenance. Faeces can be accidentally deposited in the urine section, causing blockages and cleaning problems.

All of the surfaces should be cleaned regularly to prevent odours and to minimize the formation of stains. Water should not be poured in the toilet for cleaning. Instead, a damp cloth may be used to wipe down the seat and the inner bowls. Some toilets are easily removable and can be cleaned more thoroughly. It is important that the faeces remain separate and dry. When the toilet is cleaned with water, care should be taken to ensure that the faeces are not mixed with water.

Because urine is collected separately, calcium- and magnesium-based minerals and salts can precipitate and build up in pipes and on surfaces where urine is constantly present. Washing the bowl with a mild acid (e.g., vinegar) and/or hot water can prevent the build-up of mineral deposits and scaling. Stronger (> 24% acetic) acid or a caustic soda solution (2 parts water to 1 part soda) can be used for removing blockages. However, in some cases manual removal may be required. An odour seal also requires occasional maintenance. It is critical to regularly check its functioning.

Applicability

The UDDT is simple to design and build, using such materials as concrete and wire mesh or plastic. The UDDT design can be altered to suit the needs of specific populations (i.e., smaller for children, people who prefer to squat, etc.).

Library References

Ecological Toilets

This book describes how to construct Arborloo toilets and how it can be upgraded to VIPs at a later stage.

MORGAN, P. EcoSanRes (2009): Ecological Toilets. (pdf presentation). Stockholm: Stockholm Environment Institute URL [Accessed: 09.05.2019]

Toilets That Make Compost

This book describes in an easy-to-understand and picture-based way how to construct three different low cost sanitation solutions, namely arborloos, fossa alterna and urine diversion toilets.

MORGAN, P. EcoSanRes (2007): Toilets That Make Compost . Stockholm: Stockholm Environment Institute URL [Accessed: 09.05.2019]

Technology Review of Urine Diversion Components

The publication explains the purposes of urine diversion, its benefits and challenges, urine precipitation, urine treatment and reuse in agriculture. Further, it provides an overview on design and operational aspects for equipment needed, such as waterless urinals and urine diversion toilets including supplier information and indicative costs. Overall, it pulls together scattered knowledge around the topic of urine diversion in a concise manner.

MUENCH, E. von WINKER, M. (2011): Technology Review of Urine Diversion Components. Overview of Urine Diversion Components such as Waterless Urinals, Urine Diversion Toilets, Urine Storage and Reuse Systems. Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH URL [Accessed: 11.05.2019]

Smart Sanitation Solutions

Smart Sanitation Solutions presents examples of low-cost household and community-based sanitation solutions that have proven effective and affordable. A wide range of innovative technologies for toilets, collection, transportation, treatment and use of sanitation products that have already helped thousands of poor families to improve their lives is illustrated.

NWP (2006): Smart Sanitation Solutions. Examples of innovative, low-cost technologies for toilets, collection, transportation, treatment and use of sanitation products. (= Smart water solutions ). Amsterdam: Netherlands Water Partnership (NWP) URL [Accessed: 09.05.2019]

Technology Review of Urine-Diverting Dry Toilets (UDDTs)

This publication offers a complete overview of UDDT functions, design considerations, common operation and maintenance issues and generalised installation costs. Its focus is on applications in developing countries and countries in transition, although UDDTs are also applicable in developed countries.

RIECK, C. MUENCH, E. HOFFMANN, H. (2012): Technology Review of Urine-Diverting Dry Toilets (UDDTs). Overview on Design, Management, Maintenance and Costs. (= Technology Review ). Eschborn: German Agency for Technical Cooperation (GTZ) GmbH URL [Accessed: 11.05.2019]

Ecological Sanitation - revised and enlarged edition

This book is one of the most fundamental and important books that defined the concept of ecological sanitation. The first version came out in 1998 - this version presents the findings of over ten years of research and development in ecological sanitation supported by SIDA (Swedish International Development Cooperation Agency).

WINBLAD, U. SIMPSON-HERBERT, M. (2004): Ecological Sanitation - revised and enlarged edition. (pdf presentation). Sweden: Stockholm Environment Institute URL [Accessed: 04.08.2010]

This module introduces the importance of market-based RRR solutions. At the end of this module you have identified key challenges in your local sanitation and waste management system and a RRR-related business idea.

Cover image Module  1

This module sheds light on the importance of studying the business environment and its components like waste supply, market demand, competition and the institutional framework. At the end of this module you have gained insights to evaluating the potential of your business idea.

Cover image Module  2

This module shows how a business idea can be turned into a business model while putting a specific focus on understanding the customer and designing products that meet their needs. At the end of this module you will have developed a business model and positioned your offer in the market.

Cover image Module  3

This module focusses on planning the operations of a RRR related business. During this part RRR technologies will be introduced for different waste streams and tools for planning the production process. At the end of this module you will have blueprinted your production process and the required technology and production inputs.

Cover image Module  4

This module covers key aspects of financial planning and analysis. At the end of this module you will have forecasted your profits, cash flows, required investment and evaluated the financial viability of your business model.

Cover image Module  5

This module enables you to set objectives and plan activities for the launch of your RRR business and identify potential financing sources. At the end of this module you will have developed an action plan for launch and identified appropriate financing sources.

Cover image Module  6

Week 1: Identify challenges in your local sanitation & waste management

Download Materials
Further Readings

SDG 6 along the water and nutrient cycles

This AGUASAN publication illustrates how the water and nutrient cycles can be used as a tool for creating a common understanding of a water and sanitation system and aligning it with SDG 6.

BROGAN, J., ERLMANN, T., MUELLER, K. and SOROKOVSKYI, V. (2017): SDG 6 along the water and nutrient cycles. Using the water and nutrient cycles as a tool for creating a common understanding of a water and sanitation system - including workshop material. Bern (Switzerland): AGUASAN and Swiss Agency for Development and Cooperation (SDC) URL [Accessed: 26.03.2019] PDF

Why shit matters [Video File]

TEDX TALKS (2019): https://www.youtube.com/watch?v=d4yD0kz34jg [Accessed: 28.03.2019]

"3 billion people worldwide live in cities without sewers or wastewater treatment plant infrastructure. This forces them to dump their waste into open waters, contaminating the drinking water for others downstream. Imagine if we could harness nutrients in wastewater instead of harming human and environmental health. Christoph Lüthi sees a renewable, locally produced and growing resource where others see only human waste. Watch his talk to learn why shit matters! "

Week 2: Identify RRR products and business opportunities

Download Materials
Further Readings

A public-private partnership linking wastewater treatment and aquaculture (Ghana) - Case Study

AMOAH, P., MUSPRATT, A., DRECHSEL, P. and OTOO, M. (2018): A public-private partnership linking wastewater treatment and aquaculture (Ghana) - Case Study. In: Otoo, M. and Drechsel, P. (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon (UK): Routledge - Earthscan. Section IV, Chapter 15, pp.617-630. URL [Accessed: 26.03.2019]

Briquettes from agro-waste (Kampala Jellitone Suppliers, Uganda) - Case Study

GEBREZGABHER, S. and MUSISI, A. (2018): Briquettes from agro-waste (Kampala Jellitone Suppliers, Uganda) - Case Study. In: Otoo, M. and Drechsel, P. (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon (UK): Routledge - Earthscan. Section II, Chapter 3, pp.41-51. URL [Accessed: 26.03.2019]

Cooperative model for financially sustainable municipal solid waste composting (NAWACOM, Kenya) - Case Study

OTOO, M., KARANJA, N., ODERO, J. and HOPE, L. (2018): Cooperative model for financially sustainable municipal solid waste composting (NAWACOM, Kenya) - Case Study. In: Otoo, M. and Drechsel, P. (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon (UK): Routledge - Earthscan. Section III, Chapter 3, pp.362-370. URL [Accessed: 26.03.2019]

Week 1: Analyse waste supply

Download Materials
Further Readings

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 2: Analyse market demand

Download Materials
Further Readings

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 3: Analyse your competition

Download Materials
Further Readings

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 4: Analyse the institutional environment

Download Materials
Further Readings

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 1: Meet the Business Model Canvas

Download Materials
Further Readings

A public-private partnership linking wastewater treatment and aquaculture (Ghana) - Case Study

AMOAH, P., MUSPRATT, A., DRECHSEL, P. and OTOO, M. (2018): A public-private partnership linking wastewater treatment and aquaculture (Ghana) - Case Study. In: Otoo, M. and Drechsel, P. (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon (UK): Routledge - Earthscan. Section IV, Chapter 15, pp.617-630. URL [Accessed: 26.03.2019]

Briquettes from agro-waste (Kampala Jellitone Suppliers, Uganda) - Case Study

GEBREZGABHER, S. and MUSISI, A. (2018): Briquettes from agro-waste (Kampala Jellitone Suppliers, Uganda) - Case Study. In: Otoo, M. and Drechsel, P. (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon (UK): Routledge - Earthscan. Section II, Chapter 3, pp.41-51. URL [Accessed: 26.03.2019]

Cooperative model for financially sustainable municipal solid waste composting (NAWACOM, Kenya) - Case Study

OTOO, M., KARANJA, N., ODERO, J. and HOPE, L. (2018): Cooperative model for financially sustainable municipal solid waste composting (NAWACOM, Kenya) - Case Study. In: Otoo, M. and Drechsel, P. (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon (UK): Routledge - Earthscan. Section III, Chapter 3, pp.362-370. URL [Accessed: 26.03.2019]

Week 1: Plan your production process

Download Materials
Further Readings

Compendium of Sanitation Systems and Technologies. 2nd Revised Edition

This compendium gives a systematic overview on different sanitation systems and technologies and describes a wide range of available low-cost sanitation technologies.

TILLEY, E. ULRICH, L. LUETHI, C. REYMOND, P. ZURBRUEGG, C. (2014): Compendium of Sanitation Systems and Technologies. 2nd Revised Edition. Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag) URL [Accessed: 28.07.2014] PDF

Week 2: Understand the treatment process

Further Readings

Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings

LOHRI, C. R., DIENER, S., ZABALETA, I. MERTENAT, A. and ZURBRÜGG, C. (2017): Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. In: Reviews in Environmental Science and Bio/Technology, Volume 16, Issue 1, pp 81–130. URL [Accessed: 26.03.2019] PDF

Week 3A: Design technology systems for nutrient recovery

Further Readings

Co-composting of Solid Waste and Fecal Sludge for Nutrient and Organic Matter Recovery

COFIE, O., NIKIEMA, J., IMPRAIM, R., ADAMTEY, N., PAUL, J. and KONÉ, D. (2016): Co-composting of Solid Waste and Fecal Sludge for Nutrient and Organic Matter Recovery. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 3. URL [Accessed: 27.03.2019]

Decentralized composting in India

DRESCHER, S. and ZURBRÜGG, C. (2004): Decentralized composting in India. In: Harper et al. Sustainable Composting: Case Studies in Guidelines for Developing Countries. Loughborough (UK): Water Engineering and Development Centre (WEDC), Loughborough University, Part2: Case Studies, Chapter 3, pp.15-27. URL [Accessed: 27.03.2019] PDF

Low Cost Composting Training Manual: techniques based on the UN-Habitat/Urban Harvest-CIP community based waste management initiatives

KARANJA, N., KWACH, H. and NJENGA, M. (2005): Low Cost Composting Training Manual: techniques based on the UN-Habitat/Urban Harvest-CIP community based waste management initiatives. Nairobi (Kenya): UN-Habitat. URL [Accessed: 27.03.2019]

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 3B: Design technology systems for energy recovery

Further Readings

Briquette Businesses in Uganda. The potential for briquette enterprises to address the sustainability of the Ugandan biomass fuel market

FERGUSON, H. (2012): Briquette Businesses in Uganda. The potential for briquette enterprises to address the sustainability of the Ugandan biomass fuel market. London (UK): Global Village Energy Partnership (GVEP) International. URL [Accessed: 27.03.2019] PDF

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 3C: Design technology systems for water recovery

Further Readings

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Chapter 3 - Technology Selection

VEENSTRA, S., ALAERTS, G. and BIJLSMA, M. (1997): Chapter 3 - Technology Selection. In: Helmer, R. and Hespanhol, I. (Eds). Water Pollution Control - A Guide to the Use of Water Quality Management Principles. London (UK): World Health Organization (WHO)/United Nations Environment Programme (UNEP). URL [Accessed: 27.03.2019]

Guidelines for the safe use of wastewater excreta and greywater. Volume I. Policy and Regulatory Aspects

Volume I of the Guidelines for the Safe Use of Wastewater, Excreta and Greywater focuses on policy, regulation and institutional arrangements. Accordingly, its intended readership is made up of policy-makers and those with regulatory responsibilities. It provides guidance on policy formulation, harmonisation and mainstreaming, on regulatory mechanisms and on establishing institutional links between the various interested sectors and parties. It also presents a synthesis of the key issues from Volumes II, III, and IV and the index for all four volumes as well as a glossary of terms used in all four volumes is presented in Annex 1.

WHO (2006): Guidelines for the safe use of wastewater excreta and greywater. Volume I. Policy and Regulatory Aspects. Geneva: World Health Organisation URL [Accessed: 10.04.2019]

Guidelines for the safe use of wastewater excreta and greywater. Volume II. Wastewater Use in Agriculture

Volume II of the Guidelines for the safe use of wastewater, excreta and greywater provides information on the assessment and management of risks associated with microbial hazards and toxic chemicals. It explains requirements to promote the safe use of wastewater in agriculture, including minimum procedures and specific health-based targets, and how those requirements are intended to be used. It also describes the approaches used in deriving the guidelines, including health-based targets, and includes a substantive revision of approaches to ensuring microbial safety.

WHO (2006): Guidelines for the safe use of wastewater excreta and greywater. Volume II. Wastewater Use in Agriculture. Geneva: World Health Organisation URL [Accessed: 05.06.2019] PDF

Guidelines for the safe use of wastewater excreta and greywater. Volume III. Wastewater and Excreta Use in Aquaculture

Volume III of the Guidelines for the Safe Use of Wastewater, Excreta and Greywater deals with wastewater and excreta use in aquaculture and describes the present state of knowledge regarding the impact of wastewater-fed aquaculture on the health of producers, product consumers and local communities. It assesses the associated health risks and provides an integrated preventive management framework.

WHO (2006): Guidelines for the safe use of wastewater excreta and greywater. Volume III. Wastewater and Excreta Use in Aquaculture. Geneva: World Health Organisation URL [Accessed: 08.05.2019]

Guidelines for the safe use of wastewater excreta and greywater. Volume IV. Excreta and Greywater Use in Agriculture

Volume IV of the Guidelines for the Safe Use of Wastewater, Excreta and Greywater recognizes the reuse potential of wastewater and excreta (including urine) in agriculture and describes the present state of knowledge as regards potential health risks associated with the reuse as well as measures to manage these health risks following a multi-barrier approach.

WHO (2006): Guidelines for the safe use of wastewater excreta and greywater. Volume IV. Excreta and Greywater Use in Agriculture. Geneva: World Health Organisation (WHO) URL [Accessed: 09.05.2019] PDF

Week 3: Analyse financial viability

Further Readings

Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans

OTOO, M., DRECHSEL, P., DANSO, G., GEBREZGABHER, S., RAO, K. and MADURANGI G. (2016): Testing the implementation potential of resource recovery and reuse business models: from baseline surveys to feasibility studies and business plans. Colombo (Sri Lanka): International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE). Resource Recovery and Reuse Series 10. URL [Accessed: 27.03.2019]

Week 1: Set objectives and plan activities for launch

Download Materials
Further Readings

Week 2: Finance the launch

Download Materials
Further Readings

This is the compact version of the factsheet.

Read Extended Version

Alternative Versions to