This paper discusses the Membrane Bioreactor (MBR) process and its suitability for Australian water reuse applications. With the current focus on water reuse projects and the role they play in the water cycle, the search for cost competitive advanced wastewater treatment technologies has never before been so important.
CHAPMAN, S. LESLIE, G. LAW, I. (n.y): Membrane Bioreactors (MBR) for Municipal Wastewater Treatment – An Australian Perspective. Sidney: The University of New South Wales (UNSW) URL [Accessed: 03.06.2019]Library
This paper sets out a framework for the delivery of non-sewered sanitation services that last, are accessible to all and are at scale. The framework is based on IRC International Water and Sanitation’s (IRC) experience and lessons learnt from its engagement in non-sewered sanitation service at scale.
VERHAGEN, J. CARRASCO, M. (2013): Full-Chain Sanitation Services That Last. Non-Sewered Sanitation Services. The Hague: International Water and Sanitation Center (IRC) URL [Accessed: 03.06.2019]While Switzerland's wastewater treatment plants are of a high technical standard, the elimination of nutrients remains costly and energy-intensive. Eawag has now further developed a biological process, which simplifies the removal of nitrogen from sludge digester liquid, reducing costs by 50% for this treatment step.
EAWAG (2010): Reducing Wastewater Treatment Costs and Energy Consumption. Duebendorf: Swiss Federal Institute of Aquatic Science and Technology (EAWAG) URL [Accessed: 03.06.2019]This article focuses on a few of the most exciting, very recent developments in the nitrogen cycle, summarises the changes and points out some questions to guide future research. The main processes of interest are anaerobic ammonium oxidation (Anammox), aerobic nitrification by archaea, nitrogen fixation by unicellular marine cyanobacteria, and the issue of the balance and coupling between internal input and removal pathways.
WARD, B.B. ; CAPONE, D.G. ; ZEHR, J.P. (2011): What’s New in the Nitrogen Cycle?. In: Oceanography: Volume 20 , 101-109. URL [Accessed: 03.06.2019]Check out this pdf-presentation about an IFAS project, how it was designed, constructed and its performance.
FLAMMING, J. (n.y): Integrated Fixed Film Activated Sludge (IFAS) System for Additional Nitrification at the Coldwater WWTP. (= PDF Presentation ). Grand Rapids: Fishbeck, Thompson, Carr & Huber, Inc. (FTC&H) URL [Accessed: 03.06.2019]Anaerobic ammonium oxidation processes with nitrite to N2 (anammox) has become a main focus and been widely introduced as a cost-effective biological nitrogen removal way in wastewater treatment. This paper reviews various patents, which were well developed to achieve this process, such as SHARON-Anammox, CANON, and OLAND.
LI, A. ; SUN, G. ; XU, M. (2008): Recent Patents on Anammox Process. In: Recent Patents on Engineering 2008: Volume 2 , 189-194. URL [Accessed: 03.06.2019]This study was intended to identify and test an appropriate and effective solution for the lack of adequate wastewater treatment in these communities. The MBR system, employing a Zenon ZW-10 ultrafiltration membrane, was designed and constructed at the University of Manitoba. It was installed and tested in two phases at the Opaskwayak Cree Nation Reserve in Northern Manitoba.
FREDERICKSON, K.C. (2005): The Application of a Membrane Bioreactor for Wastewater Treatment. (= Master Thesis ). Winnipeg: University of Manitoba URL [Accessed: 03.06.2019]These guidance notes are designed to provide state governments and urban local bodies with additional information on available technologies on sanitation. The notes also aid in making an informed choice and explain the suitability of approaches.
WSP (2008): Technology Options for Urban Sanitation in India. A Guide to Decision-Making. pdf presentation. New Delhi: Water and Sanitation Program (WSP) URL [Accessed: 03.06.2019]In this chapter, the authors have covered several aspects of MBR, with an exhaustive overview of its operational and biological performance. Different configurations and hydraulics of MBR are presented, with attention given to the fouling phenomenon and strategies for reducing it. Also, the high quality of MBR effluent is discussed, whereas in comparison with CAS removals of organic matter, ammonia, phosphorus, solids, bacteria and viruses are significantly enhanced.
RADJENOVIC, J. MATOSIC, M. MIJATOVIC, I. PETROVIC, M. (2008): Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology. In: BARCELO, D. ; PETROVIC, M. (2008): Emerging Contaminants from Industrial and Municipal Waste. The Handbook of Environmental Chemistry. Berlin-Heidelberg: 37-101. URL [Accessed: 03.06.2019]Membrane Bioreactors (MBRs) are commonly understood as the combination of membrane filtration and biological treatment using activated sludge. Development of a biofilm-MBR has been investigated combining a moving-bed-biofilm reactor with a submerged membrane biomass separation reactor. Treatment efficiencies were found to be high with the production of a consistent high-quality effluent, irrespective of loading rates on the bioreactor or membrane reactor operating modes. Membrane performance (fouling) is a function of the biofilm reactor effluent quality and varies with loading rates (HRT). Sustainable operation was found to correlate to the fate of the submicron particle size fraction throughout the treatment process.
LEIKNES, T.O. ODEGARD, H. (2006): The Development of a Biofilm Membrane Bioreactor. Trondheim: Norwegian University of Science and Technology (NTNU) URL [Accessed: 03.06.2019]The information service on biogas technology has been developed and produced on the behalf of the GTZ project Information and Advisory Service on Appropriate Technology (ISAT). Volume II emphasises the design and operation of biogas plants.
ISAT ; GTZ (1999): Biogas - Application and Product Development. (= Biogas Digest , 2 ). Information and Advisory Services on Appropriate Technology (ISAT) and German Technical Cooperation (GTZ) GmbH URL [Accessed: 03.06.2019]This publication describes the operation and demonstration of environmentally sound technologies, reducing the consumption of water and targeting a closure of nutrient loops in a quarter of Hannover (including housings, a school, a church and industries). Environmental technology was combined with environmental education and awareness raising, particularly for the neighbourhood and the local youth. Applied technologies for the water cycle are: constructed wetlands, bio-reactors, mini wastewater treatment plant using rotating biological contactor technology for the greywater, rainwater reservoirs, urine diverting toilets, vacuum toilets, waterless urinals, and greywater evaporation beds. Further, block heat and solar power units were installed and ecological construction materials were used.
GTZ (2005): Oeko-Technik-Park Hannover, Germany. (= data sheets for ecosan projects , 7 ). Eschborn: German Agency for Technical Cooperation (GTZ) URL [Accessed: 03.06.2019]This brochure of the MBR manufacturer KUBOTA gives an overview of how MBR systems work.
KUBOTA (2010): KUBOTA Submerged Membrane Unit. London: Kubota Membrane Europe URL [Accessed: 03.06.2019]The introduction of oxygen into wastewater for nitrification requires a large amount of energy. Furthermore, the carbon source is often limited in wastewater, so purchasing of carbon source (typically methanol) is necessary too. A newly discovered anaerobic ammonium oxidation (Anammox) may circumvent the limitations and open up a new possibility for nitrogen removal from wastewater. The alternative approach is a microbiological involved activity, which requires less energy and enables more efficiency on N removal.
XING, Y. CLARK, I.D. (n.y): Anaerobic Ammonium Oxidation in Waste Water - An Isotope Hydrological Perspective. Ottawa: University of Ottawa URL [Accessed: 03.06.2019]Technical information on the advantages and main technologies of anaerobic digestion treatment for wastewaters in developing countries.
GATE (2001): Anaerobic Methods of Municipal Wastewater Treatment. Technical Information W3e. Frankfurt (Germany): GATE Information Service and Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH URL [Accessed: 03.06.2019]This article gives an overview of the Anammox process and how it was discovered.
SHIVARAMAN, N. ; SHIVARAMAN, G. (2003): Anammox – A Novel Microbial Process for Ammonium Removal. In: Current Science: Volume 84 , 1507-1508. URL [Accessed: 03.06.2019]