Fishbeck, Thompson, Carr & Huber, Inc.

Integrated Fixed Film Activated Sludge (IFAS) System for Additional Nitrification at the Coldwater WWTP

Jim Flamming, P.E., Senior Process Engineer, FTC&H <u>Dave Woodman</u>, WWTP Supt., CBPU

Coldwater WWTP

- Owned by Coldwater BPU
- Design Average Flow is 3.2 MGD
 Peak Flow is 8 MGD
- BOD, TSS, Ammonia,
 - Phosphorus, and
 - Pathogen Removal
- Surface Water Discharge

fTCEh

Coldwater WWTP

What Drove Project?

- New discharge permit issued August 2007
- Included seasonal ammonia limits
 - 2 mg/l from May through November
 - Previously was report only
- Routine violations through spring and summer 2007
- BPU hired FTC&H to investigate possible solutions

Engineering Review and Problem Solving

Reviewed secondary treatment system
 Trickling Filter/Solids Contact (TF/SC) process

- Three, 115 ft. dia X trickling filters filled with 7 ft. of cross flow plastic media
- Followed by two parallel 152,000-gallon aeration basins (each 70' X 20' X 14.5' deep)

ficeh

Engineering Review and Problem Solving

- Expansion of aeration basins difficult due to high groundwater level at site.
- Evaluated expansion of trickling filters
 - Discussed options with Brentwood Industries
 - Concrete tanks with aluminum domes
 - 4th trickling filter would be expensive
- Investigated potential for upgrading aeration basins with IFAS media

IFAS Systems

- Submerged media carriers added to activated sludge aeration basins
- Significantly increases biomass inventory
- Little to no increase in solids loading to final clarifiers
- Increases sludge age good for nitrifying bacteria
- Come in different varieties

IFAS Systems

 Suspended media
 Poured into aeration basin
 Moves freely in mixed liquor
 Retained in basin typically with in-basin screens
 Various manufacturers

IFAS Systems

Fixed Media – i.e. AccuFAS IFAS (Brentwood Industries)

fīceh

Preliminary Design

BioWin Modeling

- Used to size aeration requirements and predict effluent quality under various flow scenarios.
 - Both basins in operation
 - One aeration grid out of service
 - One basin in operation, one out of service

BioWin Results

			- F 11 C - '-	
	Two Basins -	One Basin at Full Capacity;		One Basin Only (To
	Both at Full	One Basin with One Aeration		Meet Winter
	Capacity	Grid Out-of-Service		Requirements)
Basin Number(s)	#1 and #2	#1 (Full	#2 (Reduced	Either #1 or #2 (not
		Capacity)	Capacity)	both, one out of service)
Maximum Influent Ammonia	200	200	170	NT A
Load per Basin, ppd	280	280	170	NA
Total Maximum Influent	5(0)		450	400
Ammonia Load, ppd	560	450		400
Effluent Ammonia per Basin,	1.2	1.2	2.0	NTA
mg/l	1.3	1.3	2.8	NA
Combined Effluent	1.3 2.0		12.0	
Ammonia, mg/l	1.5	2.0		12.0
Effluent Ammonia Load per	17	17	37	NA
Basin, ppd	17	17	57	NA
Total Effluent Ammonia	34	54		320
Load, ppd	54	54		320
Air Supply Rate per Basin,	1 260	1 260	1.000	NA
scfm	1,269	1,269	1,990	NA
Total Air Supply Rate, scfm	2,538	3,259		1,410
	-,000			1,110

* - Assuming the following trickling filter effluent characteristics and operating conditions: Flowrate = 3.2 mgd; Total BOD = 40 mg/l; TSS = 165 mg/l; Alkalinity (as CaCO₃) = 5 mmol/l; Temperature = 18 degrees C; MLSS = 4,000 - 4,250 mg/l; RAS/Q = 65%

ticeh

Final Design

- Tank volume was fixed and maximum media fill possible was 60%
- Existing blowers had a firm capacity of 900 scfm; firm capacity required = 2,538 scfm
- Redundancy requirements needed to be met for both diffuser and blower capacity.
- Additional blower capacity required presentation Session 2 at 2:30 pm today

Final Design

Final Design

frceh

fTCEh

frceh

frceh

Results

ficeh

Conclusions

- IFAS can be applied to existing secondary systems to reduce effluent ammonia concentrations.
- IFAS increases sludge age, increasing the total inventory of nitrifiers, without increasing loads to secondary clafifiers.
- These systems are very robust.
- Fixed media IFAS systems (such as the AccuFAS system) can be added without affecting existing hydraulic profiles.

Fishbeck, Thompson, Carr & Huber, Inc.

THANK YOU!

Any Questions?

