

# Source separated wastewater a new resource for producing mineral fertilizer

#### L. Vråle and P. D. Jenssen\*

\* Department of Mathematical Sciences and Technology The Norwegian University of Life Sciences

3rd. International Conferenc on Ecological Sanitation, Durban May 25. 2005

www.ecosan.no

### **Resources in wastewater**

Annual discharge from one person

- Nitrogen (N) 4.5 kg
- Phosphorus (P)
   0.6 kg
- Potassium (K)
   1.0 kg
- Organic matter (BOD) 35 kg





The fertilizer value of the nutrients dicharged to the sewer systems in **Norway** 

### 30 million USD





The fertilizer value of the nutrients dicharged to the sewer systems in **Norway** 

### 30 million USD

In Norway 15 - 20 % of thecurrent mineral fertilizer use could be substituted by fertilizer derived from wastewater.

(Jenssen and Vatn 1991)

www.ecosan.no



The fertilizer value of the blackwater from 900 Mio people in rural **China** 

### 2.5 billion USD

per year

(UNESCO 2001)

www.ecosan.nd



The fertilizer value of the blackwater from 900 Mio people in rural **China** 

### 2.5 billion USD

(UNESCO 2001)

In developing countries 40 - 50 % of the current mineral fertilizer use could be substituted by fertilizer derived from wastewater.

(Etnier and Jenssen 1997)

www.ecosan.nd



#### **Norwegian University of Life Sciences**











- Urine flushed with 1-2 dl
- Faeces flushed with 2-4 liters

(Jønsson et al. 1998) www.ecosan.no

### Vacuum technology Marine installations

h.

### 1660 vacuum toilets > 2km of vacuum sewer line

www.ecosan.nd

### Large scale urban application of blackwater separation or urine diverting systems is no longer a far fetched scenario



Norwegian University of Life Sciences



/w.ecosan.no

### Transportation distances - liquid and solid organic fertilizer

| Organic fertilizer resource | Transport distance (km) |
|-----------------------------|-------------------------|
| Blackwater                  | 25 - 30                 |
| Urine                       | 40 - 50                 |
| Compost                     | 500 - 1400              |

(Jenssen and Refsgaard 1997)



## Conventional options for concentration/solidification

### **1. Membrane filtration**

- 2. Precipitation with iron and aluminum
- 3. Precipitation and treatment with lime
- 4. Struvite precipitation.
- 5. Ammonia stripping in closed loop.
- 6. Combinations of the above



### Membrane filtration - principle





### Membrane filtration



#### **Norwegian University of Life Sciences**



MB





- 1. Membrane filtration of blackwater
- Reverse osmosis retains all major ions (NPK) in the retentate
- Clean water obtained in the permeate.
- Tested in small and larger pilot scale are now undertaken by the city of Gothenburg in Sweden (Skogaberg).
- Challenges are clogging and high energy use.



## Conventional options for concentration/solidification

1. Membrane filtration

### 2. Precipitation with iron and aluminum

- 3. Precipitation and treatment with lime
- 4. Struvite precipitation.
- 5. Ammonia stripping in closed loop.
- 6. Combinations of the above



### 2. Precipitation with iron and aluminum

#### Fe and AI- phosphates formed



ctivated sludge with chemical precipitation

- Chemical precipitation is common in Nordic countries mainly to remove Phosphorus.
- Phosphorus removed 90-95 % and organic matter 75-80 % from water phase is possible.
- Minor amounts of N and K are removed.
- Fe and Al-P has low solubility under normal soil pH, plants uptake are reduced. (Krogstad et al. 2004)



## Conventional options for concentration/solidification

- 1. Membrane filtration
- 2. Precipitation with iron and aluminum
- 3. Precipitation and treatment with lime
- 4. Struvite precipitation.
- 5. Ammonia stripping in closed loop.
- 6. Combinations of the above



### 3. Precipitation and treatment with lime

- Lime as Ca(OH)<sub>2</sub> precipitate phosphorus and organics from wastewater and will be tested on blackwater.
- Combination with magnesium will lower the lime dose. Seawater addition may substitute magnesium and improve results.
- SBR technique simplifies lime dosing.
- Lime treatment will raise pH and hygienization is achieved
- Combination with ammonia stripping for high nitrogen recovery is possible.



## Conventional options for concentration/solidification

- 1. Membrane filtration
- 2. Precipitation with iron and aluminum
- 3. Precipitation and treatment with lime
- 4. Struvite production
- 5. Ammonia stripping in closed loop.
- 6. Combinations of the above



4. Struvite production.

Struvite MgNH<sub>4</sub>PO<sub>4</sub>

 Precipitation of magnesium, ammonium and phosphate as MgNH4PO4 as the white mineral struvite also called MAP has been used both in full-scale wastewater treatment tried on several places and with animal manure and initial tests are performed with urine (Adamson et al 2004).



### 4. Struvite production.

- Struvite precipitation from urine is enhanced by adding magnesium oxide (MgO) and then more than 90% of the phosphorus is precipitated.
- Due to the surplus nitrogen in the urine/blackwater and the molar ratio of N:P in struvite being 1:1 high nitrogen recovery can only be obtained by either adding phosphoric acid or ammonia adsorbing agents as zeolites (Bán and Dave 2004).



- 4. Struvite production or MAP-precipitation.
- Due to the very sensitive chemical equilibria when precipitating struvite using phosphoric acid and magnesium oxide commercial attempts to use this process has not been successful.
- A combination of MgO and zeolite for nutrient recovery from urine in laboratory studies seems more promising (Bán and Dave 2004).
- Some potassium may also be recovered through struvite precipitation.



## Conventional options for concentration/solidification

- 1. Membrane filtration
- 2. Precipitation with iron and aluminum
- 3. Precipitation and treatment with lime
- 4. Struvite production or MAP-precipitation.
- 5. Ammonia stripping
- 6. Combinations of the above



### Ammonia volatilization



**Norwegian University of Life Sciences** 







www.ecosan.nd



### 5. Ammonia stripping

- Ammonia stripping is possible both for full-scale wastewater treatment and on nitrogen rich liquids
- The largest WWT plant in Norway VEAS uses a closed loop ammonia stripping process on the filtrate from Chamber presses for sludge with great success and sell the the ammonium-nitrate to a fertilizer manufacturer.



## Conventional options for concentration/solidification

- 1. Membrane filtration
- 2. Precipitation with iron and aluminum
- 3. Precipitation and treatment with lime
- 4. Struvite production or MAP-precipitation.
- 5. Ammonia stripping
- 6. Combinations of the above



### 6. Lime and ammonia stripping





### **Method overview**

| Method                 | Ν          | Ρ    | Κ          | Energy | / O&M | Cost |
|------------------------|------------|------|------------|--------|-------|------|
| Membrane filtration    | +          | +    | +          | +++    | +++   | +++  |
| Precipitation with Fe  | -          | +    | -          | +      | +     | +    |
| Precipitation with lim | ne         | +    | -          | +      | ++    | ++   |
| Struvite precipitation | <b>ו +</b> | +    | (+         | +      | +++   | +++  |
| Ammonia stripping      | +          | I    | -          | +      | ++    | ++   |
| Lime + Ammonia str     | ript       | ₽i₩Q | <b>J</b> - | +      | ++    | ++   |



### Conclusions

- Mineral fertilizer production from urine or blackwater is feasible
- Membrane filtration or struvite precipitation are the only methods that recover all 3 major fertilizer elements N,P and K
- Lime + Ammonia stripping produces very good
   N and P fertilizer
- Chemical precipitation with Fe or Al recover only P in a form with low paint availability



### Conclusions

 More R&D should be performed into the possibilities of fertilizer production from source separated urine and blackwater

### Thank You!



#### www.ecosan.no