PHILIPPINE ALLOTMENT GARDEN MANUAL

with an introduction to

ECOLOGICAL SANITATION

Periurban Vegetable Project (PUVeP)
Xavier University College of Agriculture, Cagayan de Oro City
PHILIPPINE
ALLOTMENT GARDEN
MANUAL

with an introduction to

ECOLOGICAL SANITATION

By

Robert J. Holmer, Clarito A. Santos Jr., Glenda Y. Sol,
Stephen O. Lee, Elmer G. Elorde Jr., Arnel A. Aquino
Yvette B. Guanzon, Donah Marie D. Achas,
Janice A. Caseria, Horacio S. Factura III, Analiza U. Miso,
Rafael A. Oclarit & Angelito A. Montes

Periurban Vegetable Project (PUVeP)
Xavier University College of Agriculture
Fr. William F. Masterson SJ Ave.
Manresa Farm
9000 Cagayan de Oro City
PHILIPPINES
Table of Contents

1. **BACKGROUND** ... 8
 1.1. **WHAT ARE ALLOTMENT GARDENS?** ... 8
 1.2. **ALLOTMENT GARDENS IN EUROPE** ... 8
 1.3. **SOCIO-CULTURAL AND ECONOMIC FUNCTIONS** 9
 1.4. **ALLOTMENT GARDENS OF CAGAYAN DE ORO** 9
 1.5. **SOCIOECONOMIC IMPACT OF ALLOTMENT GARDENS** 10

2. **SOCIAL PREPARATIONS** .. 11
 2.1. **CRITERIA FOR AREA SELECTION** .. 11
 2.2. **ADVOCACY TO BARANGAY COUNCIL** .. 11
 2.3. **INFORMATION AND EDUCATION CAMPAIGN (IEC)** 12
 2.4. **SELECTION OF GARDENERS** .. 12
 2.5. **MEMORANDUM OF AGREEMENT (MOA)** 13
 2.6. **COMMUNITY ORGANIZING** .. 13
 2.6.1. **Community Organizer** ... 13
 2.6.2. **Asset-Based Community Development (ABCD)** 14
 2.6.3. **Constitution and By-laws** ... 15

3. **PHYSICAL PREPARATIONS** .. 18
 3.1. **EQUIPMENT AND TOOLS** .. 18
 3.1.1. **Purchasing Guidelines** ... 18
 3.1.2. **Turnover to Community Members** .. 18
 3.1.3. **Care of Gardening Tools** .. 18
 3.2. **LAYOUT OF GARDEN** ... 19
 3.3. **WATER SOURCE** ... 20
 3.4. **TOOL SHED, CONFERENCE ROOM AND NURSERY** 20
 3.5. **SOIL ACIDITY & LIMING** ... 21
 3.5.1. **Acid Soil Infertility** ... 21
 3.5.2. **Amount of Lime to Apply** ... 22
 3.6. **LAND PREPARATION AND FENCING** .. 22
 3.7. **CONSTRUCTION OF BEDS** ... 23

4. **GOOD AGRICULTURAL PRACTICES (GAP)** .. 24
 4.1. **NURSERY MANAGEMENT** ... 24
 4.1.1. **Seedling Establishment** ... 24
 4.1.2. **Sowing Methods** .. 25
 4.1.3. **Nursery Water Management** ... 25
 4.1.4. **Fertilization of Seedlings** ... 26
 4.1.5. **Hardening of Seedlings** .. 26
 4.1.6. **Common Problems in the Nursery** ... 26
 4.2. **DIRECT SEEDING AND TRANSPLANTING** 27
 4.2.1. **Direct Seeding** .. 27
 4.2.2. **Transplanting** .. 27
4.3. **PLANT NUTRITION** ... 27
 4.3.1. Fertilization.. 27
 4.3.2. Composting ... 29
 4.3.3. Vermicomposting & Vermiculture 30
 4.3.4. Green Manuring .. 32
 4.3.5. Nutrient Deficiencies ... 32
4.4. **PESTS AND DISEASE MANAGEMENT** 33
 4.4.1. How to Prevent and Manage Pest and Disease Problems ... 34
 4.4.2. Protection from Animal Damage 34
 4.4.3. Safe and Effective Use of Crop Protection Products 34
 4.4.4. Biological Pest Control .. 36
 4.4.5. Pheromone Traps .. 36
 4.4.6. Soil Solarization ... 37
 4.4.7. Nematode-Suppressive Cover Crops 38
4.5. **WEED MANAGEMENT** .. 38
 4.5.1. Techniques for Controlling Weeds 38
4.6. **MULCHING** .. 39
4.7. **WATER MANAGEMENT** .. 40
 4.7.1. How to Manage Soil Moisture during Dry Season 40
 4.7.2. How to Manage Soil Moisture during Wet Season 41
 4.7.3. Drip Irrigation ... 41
 4.7.4. Treadle Pump .. 43
4.8. **CROP ROTATION** .. 44
4.9. **COMPANION PLANTING** ... 44

5. **STANDARD OPERATING PROCEDURES (SOPS) FOR DIFFERENT VEGETABLE CROPS** .. 46
 5.1. **Solanaceae (Nightshade Family)** 46
 5.1.1. Tomato (Lycopersicon esculentum) 46
 5.1.2. Eggplant (Solanum melongena) 48
 5.1.3. Sweet Pepper (Capsicum annuum) 50
 5.2. **Fabaceae (Legumes)** .. 52
 5.2.1. String Bean (Vigna unguiculata subsp. sesquipedalis) 52
 5.2.2. Winged Bean (Tetragonolobus purpureus) 55
 5.2.3. Yambean (Pachyrhizus erosus) 56
 5.2.4. Mungbean (Vigna radiata) .. 58
 5.2.5. Ricebean (Vigna umbellata) .. 60
 5.3. **Brassicaceae (Crucifers)** .. 60
 5.3.1. Cauliflower (Brassica oleracea var. botrytis) 60
 5.3.2. Broccoli (Brassica oleracea var. italicca) 64
 5.3.3. Head Cabbage (Brassica oleracea var. capitata) 64
 5.3.4. Pak Choy/ Bok Choy (Brassica rapa var. chinensis) 65
 5.4. **Cucurbitaceae (Cucurbits)** .. 66
 5.4.1. Bittergourd (Momordica charantia) 66
 5.4.2. Bottlegourd (Lagenaria sicenaria) 68
5.4.3. Sponge gourd (Luffa cylindrica) ... 69
5.4.4. Cucumber (Cucumis sativus) ... 69
5.5. ALIACEAE (ONION FAMILY) .. 70
5.5.1. Bulb Onion (Allium cepa) .. 70
5.5.2. Bunching onion (Allium fistulosum) 72
5.6. POACEAE ... 74
5.6.1. Sweet Corn (Zea mays var. rugosa) 74
5.7. MALVACEAE .. 77
5.7.1. Ladies’ Finger (Abelmoschus esculentus) 77
5.8. CONVOLVULACEAE (MORNING GLORY FAMILY) 78
5.8.1. Sweet Potato (Ipomea batatas) ... 78
5.8.2. Upland Kangkong (Ipomea reptans) 80
5.9. ASTERACEAE (COMPOSITAE) .. 81
5.9.1. Lettuce (Lactuca sativa) .. 81
5.10. BASELLACEAE ... 83
5.10.1. Malabar Spinach (Basella rubra; Basella alba) 83
5.11. HERBS .. 84
5.12. OTHER VEGETABLES ... 85

6. ECOLOGICAL SANITATION .. 86
6.1. CONVENTIONAL SANITATION SYSTEMS 86
6.2. CLOSING THE LOOP ... 86
6.3. CHARACTERISTICS OF ECOLOGICAL SANITATION 86
6.4. URINE-DIVERTING DEHYDRATION TOILETS 87
6.4.1. Maintenance of a UDD Toilet .. 88
6.5. AGRICULTURAL ASPECTS OF ECOLOGICAL SANITATION .. 88
6.5.1. Reuse of Treated Urine .. 89
6.5.2. Reuse of Treated Faeces ... 90
6.5.3. Heavy Metals and Micro-pollutants in Human Excreta 90

7. SPECIAL ALLOTMENT GARDEN EVENTS 91
7.1. LAUNCHING OF THE ALLOTMENT GARDEN 91
7.2. ST. GERTRUDE DAY ... 92
7.3. ALLOTMENT GARDEN DAY ... 93
7.3.1. Best Allotment Garden .. 93
7.3.2. Best Allotment Gardener ... 94

8. BUDGET ... 95
8.1. BUDGET FOR ESTABLISHING ONE ALLOTMENT GARDEN .. 95
8.2. BUDGET FOR ESTABLISHING ONE ECOSAN UDD TOILET ... 100

9. REFERENCES ... 102
9.1. BOOKS AND ARTICLES IN JOURNALS 102
9.2. INTERNET RESOURCES .. 102
Foreword

"Population must increase rapidly, more rapidly than in former times, and ere long the most valuable of all arts will be the art of deriving subsistence from the smallest area of soil. No community whose every member possesses this art can ever be the victim of oppression in any of its forms. Such community will alike be independent of crowned kings, money kings, and land kings."

Abraham Lincoln, address before the Wisconsin State Agricultural Society, Milwaukee, Wisconsin, September 30, 1859

This Philippine Allotment Garden Manual is an output of research and extension activities of the Periurban Vegetable Project (PUVeP) of Xavier University College of Agriculture in cooperation with the city government of Cagayan de Oro, barangay administrations, local communities as well as universities and local government units from Germany and Belgium. What started in October 1997 as an international research project on urban and periurban vegetable production, has resulted in meanwhile eight allotment gardens for almost 100 urban poor families of Cagayan de Oro. The success stories and failures experienced along the way are reflected in this booklet, which we decided to come up with to address the numerous requests for information on how to set-up an allotment garden in the Philippines.

The standard operating procedures for the production of different vegetables are based on integrated crop management principles and are meant as an indicative guide only. The fertilization schemes, for example, are initial recommendations only, if soil analyses are lacking and difficult to obtain. The pest control strategies focus on preventive measures building on biodiversity. However, if all these measures fail, we recommend the responsible use of appropriate pesticides to save the crop and, thus, the investment of the gardener. This manual is far from being perfect and, hence, we appreciate the comments and suggestions of the reader to continuously improve this publication.

Heartfelt thanks to everybody who has contributed to make this possible. Ad maiorem Dei gloriam.

Robert J. Holmer, Cagayan de Oro, February 2008
1. **Background**

1.1. **What are Allotment Gardens?**

Allotment gardens are a special type of community gardens which are characterized by a concentration in one place of a few or up to several hundreds of land parcels that are assigned to individual families. In allotment gardens, the parcels are cultivated individually, contrary to other community garden types where the entire area is tended collectively by a group of people. The individual size of a parcel usually ranges between 200 and 400 m2, and often the plots include a shed for tools and shelter. The individual gardeners are organized in an allotment association which leases the land from the owner who may be a public, private or ecclesiastical entity, provided that it is only used for food production, but not for residential purposes. The gardeners have to pay a small membership fee to the association, and have to abide with the corresponding constitution and by-laws. On the other hand, the membership entitles them to certain democratic rights.

1.2. **Allotment Gardens in Europe**

Allotment gardens have been very popular in Europe for more than 150 years, although, their functions have shifted over the years. The history of the allotment gardens is closely connected with the period of industrialization and urbanization during the 19th century when a large number of people migrated from the rural areas to the cities to find employment and a better life. Very often, these families were living under extremely poor conditions suffering from inappropriate housing, malnutrition and other forms of social neglect. To improve their overall situation and to allow them to grow their own food, the city administrations, the churches or their employers provided open spaces for garden purposes. These were initially called the “gardens of the poor” and were later termed as “allotment gardens”.

While during times of crisis and widespread poverty (from 1850 to 1950), the main importance of allotment gardening was to enhance food security and improve food supply, its present functions are to provide recreational areas and locations for social gatherings. As green oases within oceans of asphalt and cement, they are substantially contributing to the conservation of nature within cities.
1.3. Socio-cultural and Economic Functions

The Office International du Coin de Terre et des Jardins Familiaux, a Luxembourg-based organization representing 3 million European allotment gardeners since 1926, describes the socio-cultural and economic functions of allotment gardens as follows:

- for the *community* a better quality of urban life through the reduction of noise, the binding of dust, the establishment of open green spaces in densely populated areas;
- for the *environment* the conservation of biotopes and the creation of linked biotopes;
- for *families* a meaningful leisure activity and the personal experience of sowing, growing, cultivating and harvesting healthy vegetables amidst high-rise buildings and the concrete jungle;
- for *children and adolescents* a place to play, communicate and to discover nature and its wonders;
- for *working people* relaxation from the stress of work;
- for *the unemployed* the feeling of being useful and not excluded as well as a supply of fresh vegetables at minimum cost;
- for *immigrant families* a possibility of communication and better integration in their host country;
- for *disabled persons* a place enabling them to participate in social life, to establish contacts and overcome loneliness;
- for *senior citizens* a place of communication with persons having the same interests as well as an opportunity of self-fulfillment during the period of retirement.

1.4. Allotment Gardens of Cagayan de Oro

In 2003, the first allotment garden of the Philippines was established in Cagayan de Oro as part of a European Union funded project following a period of agronomic and socioeconomic researches in cooperation with German, Belgian and Philippine universities, local government units and non-governmental organizations. Meanwhile, with the assistance of the German Embassy in Manila and several private donors from Germany, this number has grown to eight self-sustaining gardens located in different urban areas of the city, two of them within the premises of public elementary schools enabling more than 90 urban poor families the legal access to land for food production. Aside from different vegetables, some gardeners grow also herbs and fruits. In some gardens, small animals are kept to
provide an additional income source. Each allotment garden has a compost heap where biodegradable wastes from the garden as well as from the neighboring households are converted into organic fertilizer, thus contributing to the integrated solid waste management program of the city. Further, all gardens are equipped with so-called urine-diverting ecological sanitation toilets.

1.5. Socioeconomic Impact of Allotment Gardens

More than four years after the implementation of the first allotment gardens in Cagayan de Oro, the gardening families are able to sustain their activities without external financial support, which was given to them for the first two cropping only.

Surveys which were conducted to assess the socioeconomic impact of allotment gardening, show that the perceived benefits are multiple. 25% of the vegetables produced are consumed by the farming family, 7% are given away to friends and relatives while 68% are sold to walk-in clients, who come mostly from the direct neighborhood. They appreciate the freshness of the produce, the convenience of proximity as well as the lower price compared to the public markets. The gardening activities, a secondary occupation for all the association members, have augmented the available income by about 20% while the vegetable consumption has doubled for 75% of its members.

Aside from these economic benefits, the respondents particularly appreciate that the allotment gardens have strengthened their community values since they provide a place where they can meet, discuss issues and enjoy spending quality time with their families and friends in a clean and quiet natural environment, which they are deprived of in the densely populated areas where they live.

The gardens are also essential for the successful implementation of the city’s integrated solid waste management program. In the city districts that have an allotment garden, the amount of residual wastes delivered to the landfill site was significantly reduced since the segregated biodegradable household wastes are converted into compost in the gardens. So-called urine-diversion dehydration toilets, which are established in all gardens, have further contributed to close the loop in the waste cycle.
2. Social Preparations

2.1. Criteria for Area Selection

- The Barangay must be interested in allotment gardening and be willing to organize the community.
- The Barangay should appoint a Barangay Coordinator to overview the implementation and subsequent monitoring.
- It would also be helpful if the Barangay has already implemented the integrated solid waste program (RA 9003) (Ecological Solid Waste Management Act) to have a source of biodegradable materials for composting. A possible location for the garden could be close to a Material Recovery Facility (MRF).
- The proposed allotment garden area should not be smaller than 3000 m² to accommodate a minimum of eight family parcels of 300 m² each, plus space for the tool room and nursery, composting area, a water well and the ecosan toilet.
- The area should suit basic agronomic standards (leveled, not water logged), should be free from any shade, and exposed to sunlight for the whole day.
- The area should have a water source that could sustain irrigation throughout the year.
- It should be accessible to transportation.
- The landowner should approve of the use of the area without rental fee or if otherwise, at a reasonable cost for a minimum of two years with an option to extend the contract thereafter.

2.2. Advocacy to Barangay Council

- The allotment garden concept should be presented to the Barangay Council and discussed thoroughly.
- Roles and responsibilities of all stakeholders (i.e. academe, NGO, LGU, community partners, etc.) should be clarified, specified and agreed upon.
- The Barangay Chairman will appoint a Barangay Coordinator for the allotment garden project.
- A strategy for an information and education campaign (IEC) to identify interested community members will be designed.

1 The smallest local administration unit in the Philippines, corresponding to city or municipal district
2.3. Information and Education Campaign (IEC)

- The local government unit will organize the information and education campaign for the community.
- Those who are interested in becoming members of the new allotment garden will apply to the Barangay Coordinator.
- The Barangay will form a committee to screen the applicants according to the criteria mentioned in Section 2.4.
- The selected gardeners will receive an overview of the project, followed by lectures, exposure to other allotment gardens and hands-on training prior to the set-up of the garden.

2.4. Selection of Gardeners

Since allotment gardening is a family-based activity, at least two family members should appear for the interview. The gardeners should then be chosen according to the following criteria:

- Should be legal residents of the sitio/barangay with barangay clearance;
- Should be living near the allotment garden area;
- Should be physically fit to do gardening;
- Should have enough family members who are willing to help in all activities related to allotment gardening (at least 2);
- Applicant families should not be related to each other up to the third degree of affinity or consanguinity to avoid clan building;
- Should be willing to learn and share gardening experiences with others;
- Should be willing to do all necessary works for establishing and maintaining the allotment garden and its facilities;
- Should be willing to follow the good agricultural practices, the standard operating procedures as well as the ecological sanitation guidelines described in chapters 4 to 6;
- Should be willing to attend all trainings, seminars, workshops, field trips and other activities related to allotment gardening;
- Should be willing to form an allotment garden association and follow its constitution and by-laws.

The selected gardeners will then enter into a memorandum of agreement with the barangay and other stake holders (such as the land owner, etc.) which will stipulate the above mentioned provisions.
2.5. **Memorandum of Agreement (MoA)**

The MOA should contain the following information:
- General provisions of allotment gardening;
- Number of families;
- Size of each family parcel and overall garden size;
- List of facilities such as nursery, tool shed, ecosan toilet, compost and vermicomposting areas and water source;
- Roles and responsibilities of all stakeholders (e.g. land owner, community, local government unit, academe, private business partners, church organizations and the like);
- The specifics of the land use, particularly the duration, area dimension and limitations (for agricultural purpose only, not for residential use);
- Rental fees if any;
- Conditions for cancellation or suspension of MoA

The draft MoA is presented to all stakeholders, corrected and amended, if necessary, and eventually signed by all parties to the MoA, all of whom receive an original signed copy.

2.6. **Community Organizing**

Community organizing is a very crucial activity. It makes people realize and articulate the vision of the project through the process of evaluation and by reflection upon the situation. It is recommended that the community organizer should come from the local government unit (LGU), because:
- The LGU knows the people best.
- The community will respect the administrative authority of the LGU.
- The LGU has the capacity to control and, if necessary, to discipline individuals.
- Community organizing should be separated from technical aspects of allotment gardening (such as nursery management, fertilization, pest and disease management etc.).

2.6.1. **Community Organizer**

A community organizer must possess good facilitation skills to enhance active participation of the people in a group, especially in a non-formal setting. A good facilitator:
- Ensures the effective flow of communication within a group.
- Poses problems and encourages group analysis.
Philippine Allotment Garden Manual

- Provokes people to think critically and motivates them towards action.
- Does not change or ignore any decisions reached by the participants through consensus.
- Is sensitive, both to the verbal and non-verbal communications that occur in the group.
- Is sensitive to the feelings, attitudes, culture, interests, and any hidden agenda that may be present in a group.

During facilitation, the community organizer should observe the following:
- Keep the group focused on task and process.
- Do more listening than talking.
- Remain neutral.
- Encourage everyone to participate.
- Keep discussions going by asking questions or introducing new ideas.
- Acknowledge differing viewpoints.
- Be alert to sensitive issues.
- Speak clearly and slowly.
- Maintain eye contact when discussing.
- Summarize main points and decisions made or issues resolved at close of session and make sure that those are recorded properly.
- Maintain a friendly manner to the members.

2.6.2. Asset-Based Community Development (ABCD)

The allotment gardens of Cagayan de Oro were established following the so-called Asset-Based Community Development (ABCD) approach. This methodology seeks to uncover and highlight the strengths within communities as a means for sustainable development. The basic tenet is that, although there are both capacities and deficiencies in every community, a capacities-focused approach is more likely to empower the community and therefore mobilize citizens to create positive and meaningful change from within. In short, the ABCD approach does not focus primarily on the problems, but on the assets of the community.

Asset-based community development begins with the assumption that successful community building involves rediscovering and mobilizing resources already present in any community such as:
- The skills and resources of its individuals;
The power of voluntary associations, achieved through building relationships;
The assets present in the array of local institutions, the physical infrastructure of the community and the local economy.

Although some resources from outside the community are often needed, the key to lasting solutions comes from within. The gifts and skills of residents and the assets of the physical community are always the starting place. Although there is no blue-print for ABCD, the following steps are proposed to facilitate the process:

- Collecting stories about community successes and identifying the capacities of communities that contributed to success.
- Organizing a core group to carry the process forward.
- Mapping completely the capacities and assets of individuals, associations, and local institutions.
- Building relationships among local community members for mutually beneficial problem-solving within the community.
- Mobilizing the community's assets fully for economic development and information sharing purposes.
- Convening a group that is as broadly representative as possible for the purposes of building a community vision and plan.
- Leveraging activities, investments and resources from outside the community to support asset-based, locally defined development.

2.6.3. Constitution and By-laws

Part of community organizing is the formation of an allotment garden association with corresponding constitution and by-laws.

A Constitution:
- Is concise;
- Clarifies the group’s purpose;
- Explains the fundamental purposes of the group;
- Provides the basic framework for the group’s processes;
- Provides historical perspective;
- Is rarely revised.

By-laws:
- Outline specific procedures for the group’s functioning;
- Help the group conduct business in an orderly manner;
- Provide further definition to the constitution;
- Easily revised, and revised regularly as procedures change.
What should be covered in a constitution?
Constitutions should be concise, yet contain the important framework of an organization. They should be between two and four pages in length, leaving the detailed procedures of a group’s daily functions to the bylaws. Below is an outline of the kinds of information that should be included in a constitution.

- Article I: Name of institution
 - Include any affiliations with state or national groups
- Article II: Purpose of institution
- Article III: Membership
 - Include any requirements for membership. Neither membership in, nor services provided by the organization will be denied to anyone on the basis of race, color, religion, national origin, physical or mental handicap, age, sex, sexual preference, ancestry, or medical condition.
- Article IV: Officers
 - Include titles, terms of office, how and when elected.
- Article V: Advisor(s)
 - Include term and how and when selected.
- Article VI: Meetings
 - Frequency, special meetings, how called.
- Article VII: Quorum
 - The number of members required to conduct business, usually stated as a fraction of the number of members, such as 3/4 or 2/3.
- Article VIII: Governing Principles
 - Procedures
- Articles IX: Amendments
 - Procedure for amendment, notice required, voting procedures

What should be covered in by-laws?
By-laws are the daily working procedures of an organization. They contain the detailed processes of a group. They are usually easier to change, requiring only a simple majority, compared with a constitutional amendment which normally requires a 2/3 vote. Below is an outline of the kinds of information normally covered in the by-laws.
o Membership Selection
 - requirements, resignations, expulsion, rights and responsibilities

o Dues
 - Amount, how collected, special fees, when payable, and to whom

o Executive Board
 - Structure, membership, powers, responsibilities

o Responsibilities of Officers
 - Powers, responsibilities, specific job descriptions

o Committees
 - Standing, special, how formed, chairpersons, meetings, powers, responsibilities, how dissolved

o Responsibilities of Advisor(s)

o Elections
 - Include when, voter eligibility, winning vote margin, procedures for filling unexpired or unfilled terms of office, removal from office, and the appeal process

o Amendments
 - How to propose, notice required, voting procedures

o Other specific policies and procedures
3. **Physical Preparations**

3.1. **Equipment and Tools**

To start the actual work of the allotment garden project, prepare a list of all equipment and tools needed by the project. A sample list of equipment and tools is provided in chapter 8 (Budget).

3.1.1. **Purchasing Guidelines**

In purchasing tools, these guidelines should be followed:
- Buy the best quality tools you can afford.
- Stainless steel, cast aluminum and some other materials do not rust, hold better and last longer.

3.1.2. **Turnover to Community Members**

There may be instances where some allotment gardeners will back out a few days or weeks after the start of the project. To avoid the possibility that they will take away with them the garden tools and equipment, the following process is recommended:
- All the equipment and tools will be turned over to the Barangay custodian. The acknowledgement receipt has to be co-signed by the Barangay chairman.
- A small ceremony should be organized where these equipment and tools will be turned over to the allotment gardeners.
- The community partners will sign an acknowledgement receipt as soon as they receive the equipment and tools.
- They will commit themselves in written form to safeguard and maintain the equipment and tools and to only use them for allotment gardening purposes.
- Equipment and tools should always be kept in the tool room and supervised by the tool keeper of the community.

3.1.3. **Care of Gardening Tools**

General:
- Maintain and care for tools regularly throughout the year.
- Hang tools up rather than resting them on their points.
- Do not leave tools outside in the elements but always bring them in and wipe them off after use.

Maintenance:
- Remove all dirt from the tools.
- Rub with oil and wipe with a dry rag to prevent rusting.
To clean a rusty saw or tool, take some sandpaper and scrub the rust off. Then place the saw or tool into the bucket of sand (see below “tool cleanser” for details).

Sharpen cutting edges with a metal file.

Wood handles:
- Use sandpaper to smooth the surface to avoid splinters.
- Rub handles with a rag soaked in oil to prevent drying and cracking.
- Check and tighten any screws or bolts along the handle.

Pruners and loppers:
- Lubricate the screws and bolts.
- Sharpen the blades regularly.
- Remove any sap with soapy water or turpentine.

Tool Cleanser:
- Materials needed are motor oil, sand and large plastic container.
- Pour some sand and motor oil into the plastic container.
- Stir the oil and sand well until all the oil is absorbed.
- Take any tool and put it into the oily sand to clean and prevent rusting.

3.2. Layout of Garden

As a first step, there should be an ocular inspection of the future allotment garden site to lay out the different components and facilities.

- One family parcel has an area of 300 m2 (15 m width x 20 m length) to accommodate 8 beds (1.30 m width x 20 m length plus 0.50 m walking space between beds).
- Allocate all family parcels in such a way to fit the shape of the garden.
- Allow sufficient area for the tool shed, conference room and nursery (size depending on the number of member families).
- Identify areas for the ecosan toilet, compost heap, vermicomposting area and water source.
- Compute the fencing material needed to protect the area from stray animals, thieves and trespassers.
- Suggested border crops for excess areas are banana, papaya, pineapple, horseradish tree, etc.
- If desired and possible, identify areas for animal keeping. However, keep in mind that they should not become a nuisance and source of irritation for the neighbors.
3.3. Water Source

Water is one of the most important resources in gardening. In vegetable production, watering has to be done at least twice a day, once in the morning, preferably before 8:00 am, and once in the afternoon, preferably after 4:00 pm. Important factors to be considered are:

- The garden must have a permanent water source to sustain watering even during prolonged drought periods.
- Tap water is not recommended since it is very costly.
- If there are surface waters such as a river or creek, use pumps to drive water. Since fuel or electrically driven pumps are costly to operate, try to use ram pumps or hydro powered pumps if these are available.
- If the water table is shallow (less than 7 m) the water can be pumped using a hand driven jetmatic pump or a pedal driven treadle pump.
- If the water table is very deep, drilling has to be done by a professional company.
- If the area is swampy, a drainage canal with corresponding water catchment has to be constructed.
- Rainwater catchments can provide additional irrigation sources to conserve water.

3.4. Tool Shed, Conference Room and Nursery

- Each garden must have a small building to accommodate the tool shed, conference room and nursery. The roof should be equipped with a gutter to enable rainwater harvesting.
The tool shed is the place where the tools are properly kept. The gardeners will assign a custodian who is in charge of proper tool keeping.

The conference room is a place where the gardeners gather for meetings and to accommodate visitors. It also serves as a venue for lectures and trainings as well as a place for rest.

The nursery is a place to raise quality seedlings as a precondition for a healthy crop. It should have a space for soil media and seed trays.

The roof of the nursery should be translucent to allow entry of light. The sides should be permanently screened with nets to prevent insects and other animals from entering. The nursery should have elevated tables for the seed trays.

3.5. Soil Acidity & Liming

The vegetable crops described in this booklet grow best in a soil with a pH between 6.0 and 7.0. Since most Philippine soils are acidic, a representative soil sample should be taken to determine the pH (and, if possible, the nutrient status) of the allotment garden site.

3.5.1. Acid Soil Infertility

If the pH is below 6.0, the availability of nutrients such as phosphorus, potassium, calcium, and magnesium decreases. The availability of aluminum, zinc, manganese, copper, and iron, however, increases as the pH decreases.

If the pH is allowed to drop much below 5.5, the availability of manganese and aluminum is increased to the point that they could become toxic to plants. Aluminum toxicity to plants is the main concern of acid soils in the Philippines.

The problems of very acid (pH < 5.5) and alkaline soils (pH > 7.5) are summarized below:

<table>
<thead>
<tr>
<th>Problems in very acid soils:</th>
<th>Problems in alkaline soils:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum toxicity to plant roots</td>
<td>Iron deficiency</td>
</tr>
<tr>
<td>Manganese toxicity to plants</td>
<td>Manganese deficiency</td>
</tr>
<tr>
<td>Calcium & magnesium deficiency</td>
<td>Zine deficiency</td>
</tr>
<tr>
<td>Molybdenum deficiency in legumes</td>
<td>excess salts (in some soils)</td>
</tr>
<tr>
<td>P tied up by Fe and Al</td>
<td>P tied up by Ca and Mg</td>
</tr>
</tbody>
</table>
3.5.2. **Amount of Lime to Apply**

Unless otherwise recommended by the laboratory that has conducted the pH analysis, the following guidelines are given by the Philippine Bureau of Soils and Water Management (BSWM) to bring a soil to a pH of 6.0:

<table>
<thead>
<tr>
<th>pH</th>
<th>sandy</th>
<th>sandy loam</th>
<th>loam</th>
<th>silt</th>
<th>clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>2.0</td>
<td>3.5</td>
<td>4.5</td>
<td>6.0</td>
<td>7.5</td>
</tr>
<tr>
<td>4.5</td>
<td>1.5</td>
<td>2.5</td>
<td>3.2</td>
<td>4.2</td>
<td>5.2</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The amount of lime to apply to increase the soil pH to a desired level is affected by a number of factors, such as the soil type, crops to be grown, kind and fineness of lime used as well as the economic returns in relation to cost of lime.

If agricultural lime is not available, ground shells and wood ash can also be used to increase the pH of a soil, however, their relative neutralizing value is much lower than of lime.

3.6. **Land Preparation and Fencing**

- Prior to the land preparation, the area should be cleared from big stones, shrubs and trees.
- If the area is water logged or swampy, especially during wet season, there is a need to construct a drainage canal with a corresponding water catchment. The latter can be used as a water source for irrigation.
- Thereafter, the area should be disc plowed and harrowed by a tractor. If a tractor is not available, an animal drawn cultivator should be used.
- After the operation of all heavy equipment is completed, the fencing of the area will be done.
- The most convenient and effective material for fencing is hog wire. However, barb wire, cyclone wire, and low cost materials such as bamboo and other wood sources can also be used.
3.7. Construction of Beds

- Each family parcel accommodates eight beds.
- Bedding is done to avoid water logging during heavy rains and to facilitate easy cultivation of different crops.
- Each bed is 20 m long, 1.30 m wide and at least 0.30 m high.
- In between beds is a walking space of 0.50 m width to allow easy and convenient crop maintenance, monitoring and harvest.
- Initial construction of beds is very time consuming and tiring. It requires extra effort, perseverance and patience from the gardeners. This activity demands the full and continuous support of the community organizer.
- However, all the efforts exerted will pay off in the end with a bountiful harvest.
4. **Good Agricultural Practices (GAP)**

4.1. **Nursery Management**

A good seedling is the precondition for successful cropping and high quality crop yield. It should be disease and insect free, with great vigor and without symptoms of nutrient deficiencies.

A vegetable nursery is a place where we grow and develop healthy seedlings. It must be established in a place where there is enough sunlight that can penetrate inside the area. Preferably, translucent roofing should be used. In summary, a vegetable nursery seeks to provide the following growing conditions:
- Protection from diseases, pests, and higher animals like birds and dogs.
- Protection from rain and flooding.
- Protection from excessive sunlight and temperature.

4.1.1. **Seedling Establishment**

Crops can either be directly seeded or transplanted depending on their seed size and nature of plant roots. There are three categories according to planting practices:
- Crops that are usually transplanted are brassicas and solanaceous crops, bulb onion, lettuce and sweet corn.
- Crops that are usually direct seeded are cucurbits, legumes, kangkong, and okra.
- Crops that are planted by using plant or tuber cuttings are sweet potato, purple yam (ube), bunching onion, Malabar spinach (alugbati) and sweet potato leaves (camote tops).

Soil is the universally available medium for germinating seeds and growing seedlings but not necessarily the best medium. Characteristics of an ideal nursery medium are:
- It should have a good water-holding capacity and be well aerated (medium should not dry out too fast but should also not tend to water log; it should not be very compact to allow good root development).
- It should have the capacity to supply plant nutrients.
- It should be free from soil-borne plant pathogens.
- It should not contain any harmful substances such as salts and herbicide residues.
We recommended the following mixture:
- 1 part compost : 1 part vermicast
- If these materials are not available, mix 4 parts of rich top soil with 1 part of washed river sand.
- Plain compost can also be used.
- Do not mix sawdust in your soil media. It tends to fix the available nitrogen in the media making your seedlings nitrogen-deficient (i.e. stunted, yellowish growth).

4.1.2. **Sowing Methods**

a) Use of multi-cellular plastic trays
- Multi-cellular plastic trays are available in different sizes (50 to 104 cells per tray).
- The soil media is filled into the plastic trays.
- Depending on crop, one to three seeds are placed into each cell (see Chapter 5 for details).
- Depth of sowing depends on size of the seed. As a rule of thumb, it should be only twice the size of the seed.

b) Use of banana leaves (*lokong*)
- Banana leaves are rolled into a dimension of 2 cm in diameter by 15 cm long.
- The soil media is placed into the rolled banana leaves and placed in rows on a leveled area.
- Seeds are placed into each *lokong*. All other practices follow those described under multi-cellular trays.

Covering the trays or *lokong* with empty sacks after sowing prevents erosion and conserves moisture. It also maintains a uniform temperature that hastens germination. Covers should be removed at seedling emergence to prevent deformation and abnormalities.

4.1.3. **Nursery Water Management**

Watering of the seedlings should be done carefully:
- Water source in the nursery should be preferably tap water or rain water since surface water may carry plant pathogenic microorganisms.
- Large water droplets tend to erode the thin soil covering the small seeds, thus watering with a mist sprayer or knap sack is recommended. Hence, a sprayer should always be present in the nursery.
The soil media must be always kept moist but not wet.

4.1.4. Fertilization of Seedlings

- In the rare case that seedlings show nutrient deficiencies such as stunted growth with yellowish and purplish color, DAP (18-46-0) or Complete (14-14-14) fertilizers should be applied at the rate of 5 to 10 grams per liter of water.

4.1.5. Hardening of Seedlings

- Seedlings should be prepared for the shock and stress of transplanting into the field (“transplanting shock”) by slowly removing the optimum growing conditions of the nursery.
- This is accomplished by a process known as “hardening” which is the gradual reduction of water application and gradual exposure of the seedlings to full sunlight. This is usually done starting 5 to 10 days before transplanting.
- Care must be taken not to over-harden the seedlings.

4.1.6. Common Problems in the Nursery

Damping-Off:
- A disease commonly caused by fungi of the genera *rhizoctonia* and *pythium*.
- Symptoms are water-soaked lesions which soften the stem causing the seedlings to lodge, dry up and die.
- The disease is favored by warm conditions and wet soil medium.

If damping-off occurs in the nursery, the following counter-measures are recommended:
- Keep seedlings in the nursery moist but not overly wet.
- To minimize harmful microorganisms in the soil medium, it has to be sterilized by either of the following (or a combination thereof):
 - burning with rice straw;
 - sterilization with steam;
 - solarization (soil is wetted and sterilized by covering it with plastic sheets and exposure to sunlight for several days);
 - chemical treatments such as fungicide application;
 - addition of beneficial microorganisms such as *trichoderma harzianum* and EM (effective microorganisms) to the soil medium.
Oversized seedlings:
- Are caused by lack of sunlight, over-fertilization, or due to delayed field preparation and unfavorable weather conditions prior to transplanting;
- Have smaller chances of surviving field conditions;
- Have less ability to generate roots than younger seedlings.

4.2. Direct Seeding and Transplanting

4.2.1. Direct Seeding
- It is important that prior to direct seeding, beds should be well prepared, free from weeds and stones;
- Beds should be well leveled;
- Seeds should be directly sown into the beds according to the standard operating procedure of the certain crop;
- In the event of mortalities, seed should be replanted as early as possible to attain uniformity in germination sizes.

4.2.2. Transplanting

The term “transplanting shock” refers to the temporary growth retardation or mortality of seedlings after transplanting. This can be prevented by adequately preparing the seedlings. Ideal transplanting conditions are as follows:
- Prior to transplanting, the beds should be well prepared and thoroughly irrigated.
- It is important to use only transplants (e.g. seedlings, plant and tuber cuttings) that are healthy (free from pathogens and insects) and are in good condition.
- Transplants should not be oversized.
- Avoid damaging roots when removing seedlings from the seedling tray or lokong.
- Severely wilted plants should be soaked in water for a short time to recondition them prior to transplanting.
- Transplanting is best done early in the morning or late in the afternoon to minimize transplanting shock.

4.3. Plant Nutrition

4.3.1. Fertilization

Plants require 16 nutrient elements to grow, 13 of which come directly from the soil, namely nitrogen (N), phosphorous (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), boron (B),
copper (Cu), chlorine (Cl), manganese (Mn), molybdenum (Mb), Iron (Fe) and (Zn) while 3 come from air and water, namely carbon (C), hydrogen (H) and oxygen (O). *Macroelements* are essential elements required in large quantities (nitrogen, phosphorus, potassium, sulfur, calcium) while *microelements* are essential elements required in small quantities (boron, copper, chlorine, manganese, molybdenum, zinc, and iron).

Fertilization is a way to provide plants with nutrients that are missing in the soil. One can use either organic or inorganic/synthetic fertilizers. Inorganic fertilizers provide the bulk of plant nutrients needed while organic fertilizers improve the physical, chemical and biological properties of the soil, but supply only a small amount of nutrients. Best results are obtained if a combination of inorganic and organic fertilizers is used. Many different materials are used as fertilizers. The following are some of the common fertilizers and the nutrients they typically contain. The actual nutrient level of organic fertilizers can vary depending on the source.

Table 1: Nutrient content of different inorganic and organic fertilizers

<table>
<thead>
<tr>
<th>Inorganic fertilizers</th>
<th>N</th>
<th>P<sub>2</sub>O<sub>5</sub></th>
<th>K<sub>2</sub>O</th>
<th>MgO</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium Nitrate</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ammonium Sulfate</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Kieserite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Complete</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diammonium Phosphate</td>
<td>18</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muriate of Potash</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Epsom Salt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium Nitrate</td>
<td>13</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solophos</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urea</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic fertilizers</th>
<th>N</th>
<th>P<sub>2</sub>O<sub>5</sub></th>
<th>K<sub>2</sub>O</th>
<th>MgO</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig manure</td>
<td>1.7</td>
<td>3.9</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle manure</td>
<td>2.0</td>
<td>1.4</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guano</td>
<td>2.8</td>
<td>7.2</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>1.0</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.2. Composting

What is composting?
- Composting is the controlled aerobic decomposition of biodegradable materials by insects, earthworms, fungi and bacteria.
- Compost is the end product of composting and is utilized as a soil amendment and organic fertilizer for crops.

What materials can be composted?
- Compostable materials generally fall under one of the two categories: "browns" (rich in C) and "greens" (rich in N):
 - Brown (dry) ingredients include: dried leaves, dry grass, rice straw and hulls, sawdust, corncobs and the like.
 - Green (wet) ingredients include: fruit peels, vegetable peels, coffee grinds, tea bags, egg shells, peanut shells, garden waste, fresh grass cuttings, and similar wastes.

The following materials should not be composted:
- bones, meat, fish, since they may attract rats and dogs, as well as inorganic materials such as plastics, batteries and diapers.

What are the factors for successful composting?
- Ratio of brown to green materials should be 50:50 (C/N ratio of ~30:1).
- Compost heap should be moist but not wet.
- Compost heap should have sufficient aeration to allow oxygen to enter and carbon dioxide to leave (do not cover with plastic, but add twigs and other bulking material > 15 vol. %). A well aerated compost heap will not emit foul odor.

How long does it take?
- Depending on the methods and materials used, it can take as little as one month, or as long as a year to produce compost.
- Addition of microorganisms such as BIMO or *trichoderma* can enhance the decomposition process.
- BIMO (Balubal Indigenous Microorganisms) is produced by mixing three-day old cooked rice with muscovado sugar at a 1:1 ratio. The mixture is placed in a bamboo pole or clay pot, covered and placed in a shaded area for 1 week. A mud-like appearance indicates that it is ready for use.
- *Trichoderma* can be purchased at the Department of Agriculture Regional Office.
Urine can also be used as a compost activator. It should be applied at a rate of 0.5 liter per 10 kg of fresh substrate.

4.3.3. Vermicomposting & Vermiculture

- **Vermicomposting**
 - is the process by which earthworms are used to convert organic materials into a humus-like material known as vermicompost.

- **Vermiculture**
 - is the artificial rearing or cultivation of earthworms. The worms are either used to expand a vermicomposting operation or sold to customers.

- **Worm casting**
 - also known as “vermicast”, is a biologically active mound containing an abundance of beneficial bacteria, enzymes, and nutrients as well remnants of plant materials that were not digested by the earthworm.

- **Type of worm used**
 - The African night crawler (*Eudrilus eugeniae*) is the most preferred earthworm species for vermiculture and vermicomposting. They are warm weather animals and thrive best at temperatures between 18 to 27 °C, grow very large with an average size of 15 to 20 cm and produce an excellent vermicast.

Advantages of vermicomposting and vermicompost:

- **Vermicomposting**
 - Reduces household garbage disposal costs.
 - Produces fewer odors and attracts fewer pests than putting food wastes into a garbage container.
 - Requires little space, labor, or maintenance.

- **Vermicompost**
 - An eco-friendly natural fertilizer, which improves soil aeration, texture and tilth, thereby reducing soil compaction.
 - Promotes good soil aeration, and water holding capacity.
 - Improves water retention capacity of soil.
 - Promotes better root growth and nutrient absorption.
 - Improves the macro and micro nutrient status of the soil.
 - Basically pathogen free and, thus, an ideal substrate for the nursery.
What Worms Need:

- **Bedding**
 - Bedding is any material that provides the worms with a relatively stable habitat.
 - The bedding must be able to absorb and retain water well.

- **Worm Food**
 - Compost worms are able to eat one half of their body weight per day.
 - Earthworms derive their nutrition from many forms of organic matter. Plant matter, shredded paper, protozoans, rotifers, nematodes, bacteria, fungi and decomposing remains of other animals are known sources of worm food.

- **Preparation of substrate (i.e. food) for worms**
 - Pre-composted cow manure is an ideal substrate.
 - If there is no available manure for worms, pre-composted plant material rich in nitrogen can be used (e.g. leguminous plants).

- **Indicators that the pre-composted substrate is ready for use:**
 - Temperature of the substrate is at ambient level.
 - Manure worms are present.

- **Moisture**
 - The bedding must be able to hold sufficient moisture for the worms to be able to have a livable environment.
 - Drainage of the worm beds is critical to prevent the soil from becoming anaerobic and suffocating the worms.
 - However, a moisture content in the bedding of less than 50% is dangerous. With the exception of extreme heat or cold, nothing will kill worms faster than a lack of adequate moisture.

- **Aeration**
 - Worms breathe through their skins and therefore must have a moist environment in which to live. If a worm’s skin dries out, it dies.
 - If the material is too dense to begin with, or packs too tightly, then the flow of air is reduced or eliminated. Worms require oxygen to live, just as humans do.
 - They operate best when ventilation is good and the material they are living in is relatively porous and well aerated.

- **Other important parameters**
 - The ideal pH for most worm species is between 6 to 7.
 - Appropriate temperature.
- Appropriate worm density conditions: the density (the number of worms per unit volume of soil) at which different worm species can survive (or increase) varies enormously. Manure worms and African night crawlers thrive at densities of 30-65 cm³/worm.
- Knowledge of the worms' life cycle (varies with different species).

4.3.4. Green Manuring

What is “Green Manure”?
- “Green manure” are crops that are allowed to grow, either until the land is needed again or until the plants have reached a certain growth stage.
- At this point, they are cut down, dug into the top 15-20 cm of soil and are left to decompose, thus releasing vital plant nutrients which are then used by the next crop.
- The crop residues may also be left on the soil surface as an organic mulch.

What are the benefits of green manure?
- Leguminous green manures contain nitrogen-fixing symbiotic bacteria in root nodules that fix atmospheric nitrogen in a form that plants can use.
- Green manures increase the percentage of organic matter in the soil, thereby improving water retention, aeration, and other soil characteristics.
- The root systems of some varieties of green manure grow deep in the soil and bring up nutrient resources unavailable to shallower-rooted crops.
- Common cover crop functions of weed suppression and prevention of soil erosion and compaction are further benefits.

4.3.5. Nutrient Deficiencies

Intensive cultivation of vegetable crops makes them prone to nutrient deficiencies, not only of macroelements but also of microelements. While microelement deficiencies are relatively uncommon, their incidence, if uncorrected, could severely reduce the yield and quality of vegetable crops. Zinc and boron are those microelements frequently deficient in Philippine soils.

While nutrient deficiencies usually are caused by lack of the specific nutrient in the soil they may also occur due to over-fertilization of
certain nutrients (e.g. potassium), which may result in the inhibited uptake of magnesium and calcium. Root infection by nematodes may also result in nutrient deficiencies.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>N-deficiency causes pale, yellowish-green plants with spindly growth. Because N is a mobile nutrient in the plant, symptoms begin on the older leaves and progress up the plant if the deficiency persists.</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P-deficient plants are dark green with reddish purplish leaf tips and margins on older leaves. P-deficient plants are smaller and grow more slowly.</td>
</tr>
<tr>
<td>Potassium</td>
<td>K-deficiency is first seen as a yellowing and necrosis of the leaf margins, beginning on the lower leaves.</td>
</tr>
<tr>
<td>Magnesium</td>
<td>The veins of the leaves will remain green in color, while the remaining leaf blade is yellowish (“interveinal yellowing”). Older leaves become reddish-purple, and the tips and edges may become necrotic. Mg-deficiency can be induced by high soil potassium levels or high rates of applied potassium.</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca-deficiency is favored by very low soil pH below 5.0 or by very high magnesium and potassium levels. Plants may be severely stunted because calcium is immobile in the plant; it is not translocated from old to growing plant tissue that needs calcium. Fruits may be deformed.</td>
</tr>
<tr>
<td>Zinc</td>
<td>Plants frequently outgrow zinc deficiency unless it is severe. Zn deficiency is favored by high soil pH; low organic matter soils with high soil pH.</td>
</tr>
</tbody>
</table>

4.4. Pests and Disease Management

What are pests?
- Organisms such as insects, weeds, fungi, rodents, nematodes, viruses, terrestrial or aquatic plants, which cause damage to crops or foodstuffs.

What are diseases?
- Organisms such as fungi, bacteria and viruses, which destroy living plants and those harvested crops in storage or transport.
The major pests and diseases occurring in allotment gardens are listed in chapter 5 under the standard operating procedures described for different vegetable crops.

4.4.1. How to Prevent and Manage Pest and Disease Problems

- Weak plants suffer more from attacks by insects or pathogens than healthy plants. Good crop management will help reduce damage from insects and disease.
- Select cultivars that will grow well in the local climate. Get advice from seed companies or your local extension agent.
- Do not grow the same vegetable crop in exactly the same place as it was planted before. Rotate the crop with a representative of a different botanical family. This will help prevent a build-up of disease infection in the soil.
- Practice field sanitation and always remove diseased plant parts and burn or dig them.
- Grow plants, such as lemon grass, basil, marigolds, etc., which are known to repel certain insects.
- If you use pesticides, strictly follow the instructions on the label and the measures described in chapter 4.4.5.
- Do not forget that also “natural” pesticides such as extracts from tobacco, chili, tubli (*Derris elliptica*) and others can be very toxic to man, animals and beneficial insects.

4.4.2. Protection from Animal Damage

- Protect root crops by placing coconut shells around the plants.
- Plant cassava or place bamboo sticks around the plant base so that chickens cannot dig up the roots or peck at the plant.
- Establish a living fence (i.e. pineapple) to prevent animals from entering your garden.

4.4.3. Safe and Effective Use of Crop Protection Products

What are Crop Protection Products?

- Any biological, chemical or physical substance or product or mixture thereof, intended to control, prevent, destroy, repel, mitigate directly or indirectly, and manage population of any pest.

Basic Steps of Crop Protection:

- Know the pest.
- Select the right product against the target organism.
- Apply the product as directed.
- Wear protective equipment.
Observe proper hygiene.

Before Mixing and Application of Crop Protection Products:
- Read and understand the product label carefully.
- Check the spray equipment for defects. Never blow into the clogged nozzle. Use any pointed thing to remove the dirt. Calibrate the sprayer to calculate the desired dilution rates to meet the recommended dosage. Do not use defective spray equipment.
- Use proper personal protective equipment such as mask, boots, gloves, during application.

During Mixing of Crop Protection Products:
- Keep animals and children away from the mixing site.
- Use suitable equipment for measuring and mixing.
- Use personal protective equipment.
- Never use bare hands in scooping and stirring the solution.
- Always handle dusts and wettable powder formulations carefully.

During Field Application:
- Do not eat or smoke during pesticide application.
- Do not spray against the wind.
- Do not apply crop protection products when it is likely to rain.

After the Application:
- Thoroughly wash the spray equipment after use.
- Wash contaminated clothing separately from other clothes.
- Observe proper hygiene and do not eat or drink unless you wash thoroughly your hands and face after application.
- It is advisable to take a bath with soap after application.

Safe Handling During Storage:
- Always make sure that crop protection products are stored separately from food and foodstuffs.
- Store them in a secured place away from animals and children.

Safe Handling During Transportation:
- Load crop protection products carefully in transport vehicles.
- Keep them away from animals and passengers and load them separately form food and foodstuffs.

If Spillage Occurs:
- Contain spill with sawdust or sand to prevent further spreading.
- Rinsing should be absorbed by sawdust or sand, and buried.
- Keep people and animals away from the spill area.

Disposal of Empty Crop Protection Product Container:
- Never use empty container for storage of water and food.
- Burn the cartons away from people and animals.
Never throw the empty containers in rivers or ravines but dispose of them properly.

4.4.4. Biological Pest Control

What is biological pest control?
- Natural control strategies that employ biological agents for pest suppression. It refers to the practice of rearing and releasing natural enemies.

Advantages of biological pest control:
- Economically sustainable: Does not require a large investment of money or time to use or maintain. Other tools require a greater investment of resources.
- Ecologically sustainable: Once established, biocontrol agents are self-sustaining – they will always be there, working in the background to control pests.
- Biocontrol agents are not known to cause any adverse ecological consequences.

Disadvantages:
- Not always available. Availability varies depending on local sources.
- Biocontrol agents usually have one target pest and often only attack a certain stage of the pest (e.g. egg, larvae, adult). Hence, biological control requires a good understanding of the life cycles of the pest and the predator to be able to release the control agent at the time when the pest is most vulnerable.
- Biocontrol agents will take some time to successfully establish a population. It is not a “quick fix”.
- No biocontrol agent works in every situation. More than one type may have to be used to achieve uniform control across a variety of different situations and climates. *Diadegma*, a parasite of diamond back moth, for example, only works well in cooler upland climates and is not suited for the hotter lowland conditions. The lady beetle feeds on aphids, however, only after the colonies have been established. Virus diseases may have been already transmitted by the aphids before being eaten by the lady beetle.

4.4.5. Pheromone Traps

What are pheromones?
Pheromones are a class of semiochemicals that insects and other animals release to communicate with other members of the same species.

Pheromones have several desirable characteristics, in that they are specific to one pest species, active at low concentrations and safe to other living organisms.

How are pheromone traps used in crop protection?

- Pheromone traps can be used either to monitor or to control pest populations.
- Pheromone concentrations of as little as 10^{-8} g/cm3 of air are enough to sexually arouse the male and cause it to search for the odor source resembling a female.
- Pheromone traps are usually yellow since this color is additionally attractive to insects.
- A cotton ball inside the yellow container is baited with a pheromone plus some drops of an insecticide.
- The male insect comes in contact with the poisonous cotton ball and dies before mating with a female.

Will these traps catch all insects?

- No. Pheromone traps are species specific. They are designed to catch either one species or several closely related species.

Despite of the traps, I still can see insects. What else can I do?

- Pheromone traps are meant to be used as part of an integrated approach to pest control. Sanitation, inspection, and removal of infested material are equally important.

Where can I get pheromones?

- Several products are currently available for vegetable pests at agricultural supply stores.

4.4.6. Soil Solarization

What is Soil Solarization?

- Soil solarization is a simple non-chemical technique that captures radiant heat energy from the sun. This energy causes physical, chemical, and biological changes in the soil.
- These changes lead to control or suppression of soil borne plant pathogens such as fungi, bacteria, nematodes, and pests along with weed seed and seedlings.

How to Solarize Soil?

- The area to be solarized should be level and free of debris and large clods.
- The soil should be moist since water is a good energy conductor.
Place plastic mulch over the soil surface and bury the edges. The plastic should be left in place for 2 to 4 weeks to allow the sun energy to raise soil temperature to lethal levels.

4.4.7. Nematode-Suppressive Cover Crops

- Marigold (*Tagetes* species) is one of the most highly studied crops for its ability to suppress nematodes with antagonistic phytochemical exudates released from its roots.
- However, only certain varieties of the French dwarf (*Tagetes patula*), the African (*T. erecta*) and South American (*T. minuta*) marigolds may significantly reduce numbers of root lesion and root-knot nematodes.
- The most effective marigold cultivars are those that germinate quickly, grow vigorously, and have deep root penetration.
- The marigold crop should be left in the ground for at least 2 months at a high enough density to produce a concentration that is lethal to the nematodes.
- It is important to identify the nematode species in the field - and know what their plant hosts and antagonists are - before planning a cover-cropping strategy.

4.5. Weed management

A weed is defined as any plant that is a hazard, nuisance, or causes injury to humans, livestock or desired crops”. Through competition for light, space, water and nutrients, weeds reduce crop yield and quality and interfere with efficient harvest.

4.5.1. Techniques for Controlling Weeds

- Cut or dig out weeds using a knife or hoe. If you use drip irrigation materials, be sure not to damage the laterals.
- Cover the ground with mulch to prevent weeds from receiving sunlight.
- Weeds cut by hoe or knife can be used as mulching material or for composting.
- Quick-growing vine plants will also reduce weeds by covering the ground (such as legumes, squash and sweet potato).
- Application of herbicides may be an alternative if weed growth cannot be controlled by other means.
4.6. Mulching

Mulching is the process of covering the soil surface with either inorganic or organic materials to achieve the following advantages:

- Weed control:
 - Weed growth on the bed covered with mulch is retarded or prevented because sunlight cannot penetrate through it.

- Reduced evaporation or moisture loss:
 - Soil moisture loss is reduced under mulch. However, it also requires a drip irrigation system to supply sufficient water amounts if plastic mulches are used.

- Reduced fertilizer leaching:
 - Soil nutrients are not lost through leaching because rain water runs off the mulch.

- Cleaner product:
 - The edible products from the vegetable crops are cleaner and less subject to rot because the marketable plant parts do not have contact with the soil and soil is not splashed on the plants or fruits.

The following materials can be used as mulching agents:

- Plastic mulch:
 - In the tropics, silver coated plastic mulches are preferred compared to black ones since they do not heat up as much. The silver coating also acts as a repellant to sucking insects such as aphids. Unlike with organic mulches, this can be used for more than two cropping seasons if properly cared for and maintained.

- Rice straw, rice hulls, shredded corn cobs, dried leaves:
 - Usually these materials are cheaper compared to plastic mulches if available. However, they may host pathogens and pests and can be used for one cropping only.

- Wild peanut (Arachis pintoi):
 - Is considered a “living mulch” that can be used permanently as a soil cover. However, it competes for nutrients and water, but may provide atmospheric nitrogen to the main crop.

The following serves as a guide in placing plastic mulch:

- Bed must be well prepared and drip irrigation installed.
- Place the plastic mulch on the bed and secure the sides by placing stones or bamboo clips.
Holes are made for each hill using a heated can with approximately 10 cm rim diameter.

4.7. Water Management

Proper water management is one of the most crucial points for successful vegetable production since most crops are in general very sensitive to any kind of water stress, either to drought or to water logging. The water amount stored in the plant root zone determines whether a crop will have adequate water and aeration for maximum non-water limiting yields, or whether too much or too little water will cause crop damage.

For practical application of irrigation scheduling, the following soil feel and appearance method can be considered as adequate to be performed:

<table>
<thead>
<tr>
<th>Available water</th>
<th>Fine textured soil (clay and clay loam)</th>
<th>Water management</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 % (field capacity)</td>
<td>appears very dark, leaves slight moisture on hand when squeezed, will ribbon(^1) out about 4 cm</td>
<td>Discontinue irrigation</td>
</tr>
<tr>
<td>70 - 80 %</td>
<td>quite dark, ribbons and slicks easily, makes firm ball(^2)</td>
<td>no irrigation</td>
</tr>
<tr>
<td>60 to 65 %</td>
<td>fairly dark; forms firm ball; ribbons out (0.5 to 1 cm)</td>
<td>no irrigation</td>
</tr>
<tr>
<td>50 %</td>
<td>Balls easily; small clods flatten out rather than crumble; ribbons slightly</td>
<td>Start irrigation</td>
</tr>
<tr>
<td>35 to 40 %</td>
<td>slightly dark, forms weak balls; clods crumble</td>
<td>Continue irrigation</td>
</tr>
<tr>
<td>< 20 % (wilting point)</td>
<td>Hard, baked, cracked, light color</td>
<td>Continue irrigation</td>
</tr>
</tbody>
</table>

\(^1\) = ribbon is formed by rolling soil between thumb and forefinger; \(^2\) = ball is formed by squeezing soil hard in fist

4.7.1. How to Manage Soil Moisture during Dry Season

General:
- If water is limited, select crops that will grow well under drier conditions (e.g. mungbean, cassava, eggplant).
- Select short-term vegetable crops that can be grown near a source of water such as a water well, the drain from washing areas or a water tank.
Where feasible and affordable, use drip irrigation systems to maximize water usage efficiency.

Above the soil surface:
- Cover the soil around plants with a mulch of leaves, cut grass or rice straw.
- If plastic mulch is used, only silver-coated ones should be applied since black mulches heat up too much and can cause burning of stems and other plant parts.
- Provide young plants with shade to keep them cool.
- Remove weeds because they compete with the plant’s moisture intake.

Below the soil surface:
- Incorporate compost or organic material in the soil. One large sack of composted organic material should be sufficient for an area of about 10m². Use one sack at the start of the wet season and one sack at the start of the dry season.

4.7.2. How to Manage Soil Moisture during Wet Season

Above the soil surface:
- Plant crops in high beds to improve aeration and to avoid water logging.
- Plant crops that like to grow in wet areas, such as taro (*Colocasia esculenta*) and kangkong (*Ipomea aquatica*).
- Use coconut fronds or other materials to protect young plants and those with tender leaves from heavy rain.
- Grow vine plants up on to a trellis.

4.7.3. Drip Irrigation

Why using drip irrigation?
- Successful vegetable production requires sufficient amounts of evenly distributed water. Drip irrigation enables an efficient use of scarce or expensive water resources.
- Drip irrigation saves up to 60% of water over traditional methods since water is delivered directly to the roots of a crop; less water is lost to evaporation.
- Less weed growth occurs between plant rows during dry season.
- Fewer occurrences of diseases since only the root zone is wetted but not the leaf area.
- Precise application of nutrients is possible by applying water soluble fertilizers through drip irrigation (called “fertigation”).
Fertilizer costs can be reduced. Nutrient applications can be better timed according to plants' needs.

- Proven yield and crop quality responses to drip irrigation have been observed in many vegetable crops.

What is barrel drip irrigation?

- Water is supplied from an elevated barrel (not by a pump), thus utilizing the free gravitational force to run the system.
- Very applicable for areas smaller than one hectare.

Table 2: Components of barrel drip irrigation system and their purpose

<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Drum/Barrel</td>
<td>Water storage for the drip system</td>
</tr>
<tr>
<td>Drip Stand</td>
<td>Holds the drum at a certain elevation so that the water can flow using the gravitational force (60cm – 100 cm)</td>
</tr>
<tr>
<td>Filter</td>
<td>Screens particles that might clog the emitters</td>
</tr>
<tr>
<td>Main line</td>
<td>Conveys water from the drum towards the submain</td>
</tr>
<tr>
<td>Submain line</td>
<td>Conveys water from the main towards the laterals</td>
</tr>
<tr>
<td>Laterals</td>
<td>Conveys water from the submain to the emitters</td>
</tr>
<tr>
<td>Fittings (elbow, tee, coupling, union)</td>
<td>Important components for a flexible pipe system</td>
</tr>
<tr>
<td>Control Valve</td>
<td>To open/close the system and regulate the flow</td>
</tr>
</tbody>
</table>

What are the disadvantages of drip irrigation?

- Clogging of the emitters. Filters and laterals need regular flushing.
- Leakage at connections must be avoided.
- The laterals may be easily damaged during weeding or if people carelessly step on them.
- Rodents can cause damage of laterals.
- Initial investment for one parcel is between 7,000 to 10,000 Pesos. However, the system can be used for several years provided that it is well taken care off.

Where can I purchase drip irrigation systems?
Several companies are selling drip irrigation systems in the Philippines. It is recommended to buy quality material only from companies that provide good technical services.

What are the things that I must consider in operating and maintaining it?

- Make sure that the laterals are well placed. It is not necessary that there is one emitter per plant as long as the water is distributed evenly around the emitters.
- During the growing season, periodically check the entire system to make sure that it delivers water efficiently. That means uniform application, no leaks, no clogging.
- If you identify the damaged components, immediately repair or replace them if necessary.
- Clean the filter regularly.
- After the cropping season, flush the system thoroughly by allowing the water to flow through the laterals with their respective ends opened for several minutes. This will remove the particles deposited inside.

4.7.4. Treadle Pump

What is a treadle pump?

- A treadle pump is a foot operated water lifting device that can irrigate small plots of land in areas that have a water table which is not deeper than 7 to 8 m.
- Depending on the head, it can lift three to seven thousand liters of water per hour from shallow wells and boreholes as well as from surface water sources such as lakes and rivers.
- It is a low cost system, simple in design and easily manageable that appropriately answers the irrigation needs for small farmers who cultivate less than one hectare of land.

Advantages of treadle pumps:

- A treadle pump can be fabricated entirely from locally-available materials and can be manufactured using welding equipment and simple hand tools in the metal workshops commonly found in the Philippines.
- The treadle pump is less expensive than motorized pumps. It costs much less to operate, having no fuel and only limited repair and maintenance costs.
Since the treadle pump employs the user's body weight and leg muscles in a comfortable walking motion, use of the pump can be sustained for extended periods of time without excessive fatigue.

- The treadle pump is much less tiring to operate than other manual pumps that utilize the upper body and relatively weak arm muscles.
- It is gender sensitive since the pump can easily be operated by women, contributes to increase household food security and decreases the labor required to fetch water.

Disadvantages of treadle pumps:
- The treadle pump is only suited for shallow wells with less than 7 m depth.

4.8. Crop Rotation

Crop rotation is the practice of alternating crops belonging to different botanical families in the same space in sequential seasons for various benefits such as

- To avoid the build up of pathogens and pests.
- To balance the fertility demands of various crops to avoid excessive depletion of soil nutrients.
- To improve soil structure and fertility by alternating deep-rooted and shallow-rooted plants.
- To create biologically and economically durable crop systems.

4.9. Companion Planting

What is companion planting?
- Companion planting can be described as the establishment of two or more plant species in close proximity so that some cultural benefit (pest control, higher yield, etc.) is derived.

What are the positive effects of companion planting?
- Symbiotic nitrogen fixation:
 - Legumes have the ability to fix atmospheric nitrogen for their own use and for the benefit of neighboring plants.
- Biochemical pest suppression:
 - Some plants exude chemicals from roots or aerial parts that suppress or repel pests and protect neighboring plants.
- Physical spatial interaction:
 - The diverse canopy resulting when tall crops are companion-planted with shorter crops is believed to disorient the insects from finding and damaging them.
- Beneficial habitats:
- The benefit is derived when companion plants provide a desirable environment for beneficial insects.
 - Security through diversity:
 - A more general mixing of various crops and varieties provides a degree of security to the grower.

Table 3: Good neighbors – Bad neighbors

<table>
<thead>
<tr>
<th>Vegetable family</th>
<th>Good neighbors</th>
<th>Bad neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alliaceae (onion, garlic)</td>
<td>Solanaceae</td>
<td>Legumes</td>
</tr>
<tr>
<td></td>
<td>Crucifers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cucurbits, Asteraceae,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbs: dill, amaranth</td>
<td></td>
</tr>
<tr>
<td>Asteraceae (lettuce)</td>
<td>Legumes, Cucurbits, Alliaceae,</td>
<td>Crucifers</td>
</tr>
<tr>
<td></td>
<td>Poaceae, Solanaceae</td>
<td>Apiaceae (carrots, celery)</td>
</tr>
<tr>
<td></td>
<td>Herbs: dill</td>
<td>Herbs: parsley, dill</td>
</tr>
<tr>
<td>Crucifers/Brassicas (pak choy, cabbage, etc.)</td>
<td>Solanaceae, Alliaceae</td>
<td>Solanaceae, Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Herbs: dill, thyme, rosemary, mint</td>
<td></td>
</tr>
<tr>
<td>Cucurbits (bittergourd, cucumber, bottlegourd, squash)</td>
<td>Alliaceae, Legumes, Apiaceae</td>
<td>Solanaceae</td>
</tr>
<tr>
<td></td>
<td>Herbs: dill</td>
<td></td>
</tr>
<tr>
<td>Fabaceae/Legumes (beans)</td>
<td>Cucurbits, Asteraceae, Poaceae,</td>
<td>Solanaceae, Alliaceae</td>
</tr>
<tr>
<td></td>
<td>Herbs: rosemary, coriander</td>
<td></td>
</tr>
<tr>
<td>Poaceae (sweet corn)</td>
<td>Legumes, Cucurbits, Asteraceae,</td>
<td>Solanaceae, Apiaceae</td>
</tr>
<tr>
<td></td>
<td>Poaceae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbs: dill, amaranth</td>
<td></td>
</tr>
<tr>
<td>Solanaceae (tomato, eggplant, pepper)</td>
<td>Alliaceae, Legumes, Crucifers</td>
<td>Crucifers, Legumes, Poaceae</td>
</tr>
<tr>
<td></td>
<td>Herbs: basil, oregano, mint</td>
<td>Herbs: dill</td>
</tr>
</tbody>
</table>
5. Standard Operating Procedures (SOPs) for Different Vegetable Crops

5.1. Solanaceae (Nightshade Family)

5.1.1. Tomato (*Lycopersicon esculentum*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Kamatis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Hybrid # 15’, ‘# 10’, ‘# 7’ (Acosta Foundation Inc.)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>2 plants per hill</td>
</tr>
<tr>
<td></td>
<td>40 cm between hills, two rows per bed (70 cm between rows)</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>100 hills/bed (= 200 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>27,778 hills/ha (= 5.6 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>3.3 g (= 0.7 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirement:
- Tomatoes usually set fruit only when night temperatures are below 20 ºC. Certain cultivars, however, are also adapted for warmer climates of the tropical lowland and will bear fruits.
- Soil should be well-drained, not water-logged and rich in organic matter, with the pH preferably ranging from 5.8 - 6.5.

Sowing and seedling establishment:
- Use multi-cellular plastic trays or “lokong”;
- Sow 2-3 seeds per cell and cover with soil (depth of hole shall not be more than twice the size of the seed).

Transplanting:
- Tomato seedlings are placed outside the nursery 14 days after sowing for hardening; transplant 18 - 22 days after sowing;
- Do thinning within 10 - 14 days after transplanting to maintain 2 plants/hill;
- It is not recommended to use plastic mulch because burning of the sensitive seedlings was observed in many cases. However, organic mulches may be used to control weeds and maintain adequate soil moisture.

Trellising:
- Trellising is done after the 2nd sidedress to support the tomato vines and to prevent them from touching the ground. It also facilitates easier management and aeration of the crop, thus, reducing the risk of infestation with diseases. Trellis materials
that can be used are bamboo or wooden poles for the base, GI wire and nylon string for tying the vines.

Fertilization scheme:
Prior to starting of any agricultural activity, soil analysis should be done for every area with corresponding fertilizer recommendations. The following fertilization scheme is just an initial guide if soil analyses are lacking and difficult to obtain.

<table>
<thead>
<tr>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule of application</td>
</tr>
<tr>
<td>Chicken dung</td>
</tr>
<tr>
<td>DAP (18-46-0)</td>
</tr>
<tr>
<td>Urea (46-0-0)</td>
</tr>
<tr>
<td>MoP (-0-0-60)</td>
</tr>
<tr>
<td>Kieserite</td>
</tr>
<tr>
<td>Zinc Sulfate</td>
</tr>
<tr>
<td>Solubor</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Basal (at transplanting)</td>
</tr>
<tr>
<td>100.0</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>1st sidedress (1 WAT) ^2</td>
</tr>
<tr>
<td>3.9</td>
</tr>
<tr>
<td>5.8</td>
</tr>
<tr>
<td>2.7</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>2nd sidedress (3 WAT)</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>5.8</td>
</tr>
<tr>
<td>2.7</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
</tr>
</tbody>
</table>

Major pests:
- Tomato fruitworm (*Helicoverpa armigera*)
- White Fly (*Bemisia tabaci*)
- Aphids (*Aphis* sp.)
- Nematodes

Control measures against pests are the use of appropriate pesticides. Tomato fruit worm can also be controlled by timely release of the egg parasitoid *Trichogramma chilonis*, if available. The control of aphids and white flies is important since they are carrier of different viruses. Nematodes can be prevented by planting marigold (*Tagetes* sp.) prior to the crop (see chapter 4.4.7).

Major diseases:
- Bacterial wilt (*Ralstonia solanacearum*)
- Early blight (*Alternaria solani*)
- Late blight (*Phytophthora infestans*)
- Tomato mosaic virus (TMV)

^2 WAT = weeks after transplanting
Tomato yellow leaf curl virus (TYLCV)

Control measures against diseases are the use of tolerant or resistant cultivars, good sanitation (i.e. timely removal and burning/burying of diseased plant parts) and the use of appropriate pesticides. It is important to also include the underside of the leaves in the spraying schemes to protect them from bacterial and fungal infestation (the spraying movement should correspond to the letter “C”). No smoking policies in the garden can prevent the spread of TMV.

Nutrient deficiencies:
- Blossom end rot is a calcium deficiency symptom often caused by poor management practices, such as giving too much or too little water and applying excess amounts of potassium and magnesium fertilizers. If symptoms occur, foliar application of calcium-based fertilizers using knapsack sprayer at a rate of 5 to 10 grams fertilizer per liter of water may be done.

Harvesting:
- The first harvest is 60 to 70 days after transplanting depending on the desired maturity (green mature, breaker, full red) of the fruit and continues thereafter on a weekly basis for a period of one month.

5.1.2. Eggplant (*Solanum melongena*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Talong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Casino 901’ (East West Seed Company)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill
 40 cm between hills, two rows per bed
 (70 cm between rows)</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>100 hills/bed (= 100 plants/bed)
 27,778 hills/ha (= 2.8 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>4.0 g (= 0.4 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:
- Eggplant is a warm weather crop and grows best under temperatures between 21 to 29 °C. It can tolerate drought and excessive rainfall but becomes more vegetative if temperatures and humidity are high.
- Eggplant prefers well-drained soils rich in organic matter, with soil pH ranging between 5.8 - 6.5.
Sowing and seedling establishment:
o Use multi-cellular plastic trays or “lokong”, sow 1-2 seeds per cell and cover with soil.

Transplanting:
o It is recommended to use plastic mulch to reduce weed growth and to prevent the larvae of the eggplant fruit and shoot borer to enter the soil for pupation.
o Place plastic mulch on the prepared bed one week before transplanting. Irrigate the bed up to water saturation to allow sterilization through solar heat (“soil solarization”).
o Eggplant seedlings are placed outside the nursery 21 days after sowing for hardening; transplant them 25-28 days after sowing at a seedling height of 7-10 cm.
o Do thinning within 10-14 days after transplanting to maintain 1 plant/hill.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chicken dung</td>
</tr>
<tr>
<td>Basal (at transplanting)</td>
<td>100.0</td>
</tr>
<tr>
<td>1st sidedress (1 WAT)</td>
<td>3.9</td>
</tr>
<tr>
<td>2nd sidedress (3 WAT)</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Weed management:
o Since eggplant grows rather slowly, it cannot compete with weed growth, which may harbor damaging insects and diseases. Placing of mulch can reduce the need for frequent hand weeding.

Major pests:
o Eggplant Fruit and Shoot Borer/EFSB (Leucinodes orbonalis)
o White Fly (Bemisia tabaci)
o Aphids (Aphis sp.)
o Eggplant Leaf Roller (Eublemma olivacea)
o Mites
The EFSB is difficult to control once the larvae are inside the fruit and the shoots. Hence, it is important to apply insecticides shortly after they hatch from the eggs because this is their only vulnerable stage. The use of pheromone traps can give an indication of the mating time of the adults, thus, enabling determination of the time of egg deposit. At this stage, the gardener has to continuously look for egg deposits near the fruits and shoots with the larvae hatching a few days thereafter. Once the fruits and shoots are infested, they have to be continuously pruned and removed.

The control of aphids and white flies is equally important since they are carriers of different viruses. Appropriate insecticides and miticides may be used if other preventive measures have failed.

Major diseases:
- Powdery mildew (*Levillula taurica*)
- Anthracnose fruit rot (*Colletotrichum melongenae*)
- Fusarium wilt (*Fusarium oxysporum*)

Control measures against diseases are the use of tolerant or resistant cultivars, good sanitation and use of appropriate pesticides.

Harvesting:
- First harvest is 60 days after transplanting, continues on a weekly basis for a period of 2-3 months.

5.1.3. Sweet Pepper (*Capsicum annuum*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Atsal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Yolo Wonder’ (bell pepper type) (Ramgo)
‘Majesty’ (plastic pepper type) (East West Seed Company)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>2 plants per hill
40 cm between hills, two rows per bed
(70 cm between rows)</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>100 hills/bed (= 200 plants/bed)
27,778 hills/ha (= 5.6 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>5.5 g (= 1.1 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:
- Sweet pepper prefers temperatures between 21 and 24°C.
It grows best in well-drained soils with good water-holding capacity, rich in organic matter, and a soil pH between 5.5 and 6.8.

Sowing and seedling establishment:
- Sow 2-3 seeds per cell of multi-cellular plastic trays or “lokong” and cover with soil.

Transplanting:
- It is recommended to use plastic mulch to reduce weed growth.
- Place plastic mulch on the prepared bed one week before transplanting. Irrigate the bed up to water saturation to allow sterilization through solar heat (“soil solarization”).
- Pepper seedlings are placed outside the nursery 21 days after sowing for hardening; transplant 25-28 days after sowing at a seedling height of 7-10 cm.
- Do thinning within 10-14 days after transplanting to maintain 2 plants/hill.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chicken dung</td>
</tr>
<tr>
<td>Basal (at transplanting)</td>
<td>100.0</td>
</tr>
<tr>
<td>1st sidedress (1 WAT)</td>
<td>3.9</td>
</tr>
<tr>
<td>2nd sidedress (3 WAT)</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Major pests:
- Thrips (*Thrips palmi*)
- White Fly (*Bemisia tabaci*)
- Aphids (*Aphis* sp.)
- Fruitworm (*Helicoverpa armigera*)

Control measures against pests are the use of appropriate pesticides. Fruit worm can also be controlled by timely release of the egg parasitoid *Trichogramma chilonis*, if available. The control of thrips,
aphids, and white flies is very important since they are carriers of different viruses.

Major diseases:
- Antracnose (*Colletotrichum piperatum*)
- Bacterial wilt (*Ralstonia solanacearum*)
- Bacterial soft rot (*Erwinia carotovora*)
- Bacterial spot (*Xanthomonas campestris*)
- Phytophthora blight (*Phytophthora capsici*)
- Cucumber mosaic virus (CMV), chilli veinal mottle virus (ChiVMV), tobacco mosaic virus (TMV)

Control measures against diseases are the use of tolerant or resistant cultivars, good sanitation and use of appropriate pesticides. Thrips prefer to stay in the flowers of pepper. Hence, it is important to include the flowers in the spraying scheme. No smoking policies in the garden can prevent the spread of TMV.

Harvesting:
- Harvest starts about 60 days after transplanting (35–40 days from flowering), and continues on a weekly basis for a period of 2 months.
- Sweet pepper should be harvested when fruits reach full size and become firm, but before turning color (unless they are intended for mature color yellow, orange, or red).
- Since stems of pepper plants are very fragile, a knife should be used to harvest fruits. Avoid mechanical transmission of viruses by dipping knives routinely in milk.

5.2. Fabaceae (Legumes)

5.2.1. String Bean (*Vigna unguiculata* subsp. *sesquipedalis*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Sitaw</th>
</tr>
</thead>
</table>
| Recommended Cultivar: | ‘Sandigan’ (EastWest Seed Company)
| | ‘Bush sitaw’ (Acosta Foundation Inc.) |
| Planting Distance: | 2 plants/hill
| | 30.0 cm between hills, two rows per bed
| | (70 cm between rows) |
| Planting Density: | 133 hills/bed (= 266 plants/bed)
| | 37,038 hills/ha (=7.4 plants/m²) |
| 1000-seed weight: | 270 g (= 72 g/bed) |
Soil and climatic requirements:
- Optimum growth is at a temperature range of 20-35 ºC.
- String bean thrives in a wide range of soil types from sandy to clay soils and is generally tolerant to acidic soils.
- Although it is an all-season crop, it is susceptible to drought and waterlogging. Heavy and continuous rain during the wet season may induce rotting of pods.
- When grown under a long period of cloudy days, string beans become excessively vegetative.

Seed preparation:
- If the area is to be planted with beans for the first time, seeds should be treated with a *Rhizobium* inoculant to enable uptake of atmospheric nitrogen. Make sure that the inoculant is suited for the specific bean planted. Different *Rhizobium* strains are available at the Department of Agriculture.

Direct seeding:
- Apply basal fertilizer according to recommendation below.
- Cover fertilizers with 2 cm soil before sowing 2-3 seeds per hill at 30.0 cm distance between hills. This will avoid burning of the germinating seedling.
- Cover seeds with 2-3 cm soil after planting.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chicken dung</td>
</tr>
<tr>
<td>Basal</td>
<td>50.0</td>
</tr>
<tr>
<td>1<sup>st</sup> sidedress</td>
<td></td>
</tr>
<tr>
<td>(2 weeks after sowing)*</td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup> sidedress</td>
<td></td>
</tr>
<tr>
<td>(4 weeks after sowing)*</td>
<td></td>
</tr>
</tbody>
</table>

On a as needed basis if plants show nutrient deficiency symptoms

Trellising:
- Trellising is done 2 weeks after sowing to support the vines and to prevent pods from touching the ground. It also facilitates easier management and aeration of the crop, thus, reducing the risk of infestation with diseases. Trellis materials that can be used are
bamboo or wooden poles for the base, GI wire and nylon string for tying the vines.

- The cultivar ‘bush sitaw’ does not necessarily need trellis since vines are shorter.

Mulching:

- Mulch with plastic sheets, rice straw or other organic materials to control weeds and regulate soil moisture.
- If plastic mulch is used, it has to be installed prior to sowing.

Major pests:

- Cutworm (*Spodoptera litura*)
- Aphids (*Aphis* sp.)
- Thrips (*Thrips palmi*)
- Leaf miner (*Lyriomiza* sp.)
- Beanfly (*Ophiomyia phaseoli*)
- Leafhopper (*Empoasea* sp.)
- Legume podborer (*Maruca vitrata*)

Aphids have to be controlled in the early stage of the crop to minimize the risk of virus infestation. Leaf miners may appear in the vegetative stage of the crop and reduce photosynthetic active areas of the leaves, thus reducing yield potential. The legume podborer is a key pest of legume crops in Southeast Asia. The larvae attack flower buds, flowers and young pods. Conventional insecticides can control insect pests effectively. Alternatives are botanical pesticides such as neem (*Azadirachta indica*) and papaya (*Carica papaya*) extracts.

Major diseases:

- Damping-off
- Different viruses

Use of tolerant or resistant cultivars, proper crop rotation and sanitation can reduce the impact of these diseases.

Harvesting:

- String beans can be harvested 45-65 days after plant emergence. Green tender pods are harvested 7-10 days after flowering when seeds are partly developed but hardly evident from the outside of the pod.
Pods are picked at a 2-day interval to prolong the productive life of the crop. If pods are allowed to mature, the overall plant life will be shortened.
Harvesting should be done early in the morning so as not to expose the pods to sunlight, thus, minimizing transpiration.

5.2.2. Winged Bean (*Tetragonolobus purpureus*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Seguidellas, cuatro kantos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>None (any open pollinated cultivar)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant/hill</td>
</tr>
<tr>
<td></td>
<td>1 m between hills, two rows/bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>40 hills/bed (= 40 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>11,111 hills/ha (= 1.1 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>500 grams (= 20 g/bed)</td>
</tr>
</tbody>
</table>

Climate and soil requirements:
- Winged bean grows abundantly in hot, humid climates and does well in areas with high rainfall.

Seed preparation and inoculation:
- If the area is to be planted with beans for the first time, seeds should be treated with an *Rhizobium* inoculant.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chicken dung</td>
</tr>
<tr>
<td>Basal</td>
<td>50.0</td>
</tr>
<tr>
<td>1<sup>st</sup> sidedress (2 weeks after sowing)*</td>
<td>10.0</td>
</tr>
<tr>
<td>2<sup>nd</sup> sidedress (4 weeks after sowing)*</td>
<td>10.0</td>
</tr>
</tbody>
</table>

On a as needed basis if plants show nutrient deficiency symptoms

Direct seeding:
- Apply basal fertilizer according to recommendation above.
- Cover fertilizers with 2 cm soil before sowing 1 seed per hill at 1 m distance between hills. This will avoid burning of the germinating seedling.
- Cover seeds with 2-3 cm soil after planting.
Trellising:
- Trellising is done two weeks after sowing to support the vines and to prevent pods from touching the ground. It also facilitates easier management and aeration of the crop, thus, reducing the risk of infestation with diseases. Trellis materials that can be used are bamboo or wooden poles for the base, GI wire and nylon string for tying the vines.

Mulching:
- Mulch with plastic sheets, rice straw or other organic materials to control weeds.
- If plastic mulch is used, it has to be installed prior to sowing.

Harvesting:
- Winged bean can be harvested 60-90 days after plant emergence. Harvest green tender pods.
- Aside of the pods as well as its young leaves and shoots may be eaten as leafy vegetables as well as pickles. The ripe seeds can be roasted as a substitute for peanuts. Winged beans have numerous edible roots which grow at shallow depth and become thick and tuberous. The roots contain about 20 percent crude protein.

5.2.3. Yambean (*Pachyrhizus erosus*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Singkamas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>None (any locally available cultivar)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>20 cm between plants in a row x 40 cm between rows; 3 rows per bed</td>
</tr>
</tbody>
</table>
| Plant Density: | 1 plant/hill
300 hills/bed (= 300 plants/bed)
83,333 hills/ha (=8.3 plants/m²) |
| 1000-seed weight: | 300 grams (= 90 g/bed) |

Climatic and soil requirements:
- Yambean, also known as jicama, is a legume crop grown for its large tuberous roots which can be eaten raw or cooked. It prefers warm, dry climates and can be grown year round.
- It prefers light (alluvial) and well drained soils, as these remain loose after rain or irrigation.
- Heavy soils are not desirable because of their poor drainage. They may also cause deformation of the tubers.
Cultural management practices:
- Bed preparation must be thorough to a depth of 0.25 m.
- Smooth the surface to ensure an even germination.

Seed preparation:
- Seeds should be inoculated with *Rhizobium* on the day of planting.

Fertilization scheme:
- Fertilizer is applied using the row placement (band) method using the amounts indicated below.
- The fertilizer is applied evenly in furrows and covered with 2 or 3 cm of fine soil. Seeds are drilled above the covered fertilizers and covered with 3 – 4 cm of soil.

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/linear meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (before sowing)</td>
<td>Chicken dung (250)</td>
</tr>
</tbody>
</table>

Weeding:
- At least twice during the first couple of months, to eliminate weeds and to earth up the ridges to cover the growing tubers.

Water management:
- The initial irrigation is crucial for even germination.
- Once the crop is well established, a suitable soil moisture content must be maintained.

Pruning:
- Removal of reproductive shoots is necessary to obtain maximum tuber yields.

Major pests:
- Yambean produces a natural insecticide in the above ground plant parts, which protects the plant from harmful pests

Major diseases:
- Bean common mosaic virus (BCMV):
- Witch’s broom disease (mycoplasma-like organisms)
- Root rot (*Pythium* spp.)

Harvesting:
- To avoid splitting or cracking of the tubers, care should be taken not to irrigate for two weeks before harvest.
- Harvest takes place once the tuberous roots have attained marketable size (depending on whether small, medium sized or large tubers are preferred by consumers).
o Harvest the tubers by hand, using a hoe.
 o Leave the vegetative top either to be incorporated in the soil (green manuring) or for composting.
 o Dry lifted tubers in the sun for 1-2 weeks before selling to increase the sugar content by conversion of the starch.

5.2.4. Mungbean (*Vigna radiata*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Monggos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>Any available local cultivar</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>2 plants/hill</td>
</tr>
<tr>
<td></td>
<td>5 cm between hills, two rows/bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>400 hills/bed (= 800 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>111,111 hills/ha (= 22.2 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>30 grams (= 24 g/bed)</td>
</tr>
</tbody>
</table>

Cultivar selection:
 o Recommendations can be obtained by the Department of Agriculture as well as the World Vegetable Research and Development Center (AVRDC) in Taiwan which is the international center for mungbean research.

Climatic and soil requirements:
 o Grow best on fertile sandy, loam soils with good internal drainage and prefers pH ranges from 6.2-7.2.
 o Mungbean is responsive to length of daylight. Short days hasten flowering and long days delay it.

Inoculation:
 o Seeds are placed in a container and sprinkled with small amount of water, and followed by the inoculant powder (appropriate *Rhizobium* strain). These are mixed thoroughly until the seeds are coated with the inoculant and appear almost dry.
 o 500 g inoculant is recommended to coat 50 kg of seeds.
 o Immediately sow the inoculated seeds. If sowing will be delayed, inoculated seeds should be protected from high temperature, drying, and direct sunlight until used. Exposure will destroy the rhizobia and render inoculation ineffective.
 o The inoculant should be refrigerated and used before the expiration date indicated on the package.

Direct seeding:
 o Before direct seeding, the bed has to be soaked up to saturation.
 o Fertilizer is applied using the row placement (band) method using the amounts indicated below.
The fertilizer is applied evenly in furrows and covered with 2 or 3 cm of fine soil to avoid burning of the germinating seedlings.

Cover seeds with 1 cm soil after planting.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/linear meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chicken dung</td>
</tr>
<tr>
<td>Basal (before sowing)</td>
<td>250</td>
</tr>
</tbody>
</table>

Water management:

- Although mungbean is drought tolerant, adequate irrigation is required from flowering to late pod fill to ensure good yield.

Major pests:

- In general, mungbean does not require insecticide sprays to control problems in the field. Occasional grasshopper or caterpillar infestation could occur and result in defoliation. Podborers may affect developing seeds, weevils can attack the seed in storage.

Major diseases:

- Mungbean is susceptible to the usual array of pathogens which attack other legumes such as *Phytophthora*, mildew, bacterial rots and *Rhizoctonia*. Proper crop rotation, tillage practices, and water management (avoid excess irrigation) can be effective in reducing the impact of these diseases.

Harvesting:

- Pod maturity is not uniform because the plants flower over an extended period. This makes it difficult to decide when to harvest.
- Generally, harvest begins at 60 days after sowing when ½ - 2/3 of the pods are mature.
- As many as 5 pickings are done on some high yielding lines.

Drying and storage:

- Harvested pods are placed in mosquito nets or empty sacks. Slightly step on them until all pods are open and seeds are released.
- Prior to storing, remove all leaf material, stems, immature pods, dirt, insect parts and other debris.
- Expose beans to full sunlight until they are fully dried. You can assess the exact dryness by biting some of the seeds. If the seed separates, then they are dry.
5.2.5. Ricebean (*Vigna umbellata*)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Name:</td>
<td>Tahore</td>
</tr>
<tr>
<td>Recommended Cultivar:</td>
<td>Any available local cultivar</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>2 plants/hill</td>
</tr>
<tr>
<td></td>
<td>5 cm between hills, two rows/bed</td>
</tr>
<tr>
<td></td>
<td>(70 cm between rows)</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>400 hills/bed (= 800 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>111,111 hills/ha (= 22.2 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>30 grams (= 24 g/bed)</td>
</tr>
</tbody>
</table>

Ricebean is considered as one of the under-utilized indigenous legumes of the Philippines. It can also be used as a soil improving, nitrogen-fixing, green manure crop. Its cultural management practices correspond to those described for mungbean.

5.3. Brassicaceae (Crucifers)

5.3.1. Cauliflower (*Brassica oleracea var. botrytis*)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Name:</td>
<td>Koliiflower</td>
</tr>
<tr>
<td>Recommended Cultivar:</td>
<td>‘SC2-45’</td>
</tr>
<tr>
<td></td>
<td>(Sakata; Allied Botanicals)</td>
</tr>
<tr>
<td></td>
<td>‘White Coral F1’</td>
</tr>
<tr>
<td></td>
<td>(Kaneko)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill</td>
</tr>
<tr>
<td></td>
<td>30 cm between hills, four rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>267 hills/bed (267 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>74,105 hills/ha (= 7.4 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>3 grams (= 0.8 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:
- Cauliflower usually forms curds only when night temperatures are below 20 ºC. Certain cultivars, however, are also adapted for warmer climates of the tropical lowland and will develop curds.
- Well-drained, loamy soils with high levels of organic matter and a soil pH of 6.0 - 6.8 are preferred.

Nursery:
- Sow the 1 to 2 seeds either in plastic trays or *lokong*.
- Cover with coconut leaves or empty sacks until germination for about 1 week.
- Spray with fungicides to prevent damping-off.
Cover with (mosquito) net until transplanting (21-25 days after sowing) to prevent insects from depositing their eggs onto the young seedlings.

Water regularly.

Transplanting:

Moisten bed one hour before transplanting to prevent transplanting shock.

Transplant only healthy seedling free from insect damage or diseases.

Add 100 g of chicken dung and 10 g of Diammonium phosphate into the planting hole and cover with a soil layer of about 4 cm to avoid burning of roots.

Cover seedlings with banana bracts if available and irrigate.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Chicken dung</th>
<th>DAP (18-46-0)</th>
<th>Urea (46-0-0)</th>
<th>MoP (-0-0-60)</th>
<th>Kieserite</th>
<th>Zinc Sulfate</th>
<th>Solubor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (at transplanting)</td>
<td>100.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st sidedress (1 WAT)</td>
<td></td>
<td></td>
<td>3.8</td>
<td>3.6</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2nd sidedress (3 WAT)*</td>
<td></td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* at start of curd/head forming

Irrigation:

Regular watering either by furrow sprinkler or drip irrigation.

Do not over-water in the first two-three (2-3) weeks after transplanting.

Never allow plants to wilt, more so when the crop arrives at the 6-7 leaf stage so the curds will not get affected.

Weed Management

Continuously remove weeds until plants have fully established.

Major pests:

Diamond back moth (*Plutella xylostella*)
Flea beetle (*Phyllotreta cruciferae*)
- Aphids (*Aphis* sp.)
- Whitefly (*Bemisia tabaci*)

Control methods:
- Diamond back moth is the most prevalent pest of cauliflower and other brassicas. Often, insects have developed resistance to most pesticides (including biological ones), hence a combined strategy of using different classes of insecticides and biological control methods is the most promising one.
- **Parasitoids:**
 - *Diadegma semiclausum* and *Cotesia plutella* are parasitizing larvae of diamond back moth, with *Diadegma* preferring cooler climates than *Cotesia*. Release must be done in weekly intervals.
 - *Trichogramma chilonis* parasitizes eggs of diamond back moth. So-called “tricho-cards” containing eggs of trichogramma are released to the field when egg deposit of diamond back moth has started at weekly intervals.
- **Biological insecticides:**
 - Several strains of *bacillus thuringiensis* (Bt) are effective against diamond back moth, although resistances have been reported.
- **Botanical insecticides:**
 - Extract of neem tree seeds or leaves can also be used with seed extracts being more effective.
- **Chemical insecticides**
 - Pyrethroids (i.e. Karate, Ripcord, etc) and organophosphates (Selcror, etc.) should be alternately applied to avoid build-up of resistances.

Important:
- Since biological, botanical and chemical insecticides have to be ingested by the larvae, it is important to mix them with a sticker (Hoestick, etc.). Since the leave surface of cauliflower and other brassicas is waxy, insecticides tend to pearl off without sticker, thus making them ineffective.
- Since the parasitoids described above are also insecticides, it is important to release a new batch after each insecticide application.

Major diseases:
- Head rot (*Rhizoctonia solani*)
Clubroot (*Plasmodiophora brassicae*)

Control measures:
- Head rot, a firm to slimy dark decay at the base of the outer leaves which wilt and turn to black near the main stem, can be controlled by application of appropriate fungicides and proper sanitation (removal and burning of leaves).
- If symptoms of clubroot are observed (abnormal enlargement of roots; tops become stunted, yellowish and wilt), discard affected plants and do not plant crucifers for the next three years. Liming to a soil pH to 6.5 or higher can avoid occurrence of this disease.

Physiological disorders and their causes:
- Hollow flower stalks: too rapid vegetative growth due to excess nitrogen.
- Ricey: high temperatures during curd development
- Leaves in curd: revision to vegetative growth (too much nitrogen)
- Yellow, green curds: excessive exposure to sunlight and resultant chlorophyll formation. This can be avoided by closing the wrapper leaves around the forming curd with a toothpick or rubber band 1 to 2 weeks before harvest.
- Browning of curds: Boron and calcium deficiency and certain diseases
- Purple curd discoloration: over maturity, poor leaf cover, phosphorous deficiency.
- Internal cavitations: high nitrogen and water rates, boron deficiency.
- Buttons: premature shift to generative stage (using plants that are quite large at the time of transplanting; severe nitrogen deficiency)
- Blindness: growing prints damage from insects
- Witches brooming: Boron deficiency

Harvesting:
- Cauliflower is ready for harvesting about 45 to 60 days after transplanting, depending on cultivar and season.
- Harvest cauliflower heads when they are 12 to 15 cm in diameter. They should be firm, white, not discolored, ricey or blemished.
Begin with cauliflower harvest when about 10% of the heads are ready. Harvest is then necessary at about 4 to 8-day intervals. Fields are usually harvested 5-6 times.

The heads get easily damaged, hence handle with great care

5.3.2. **Broccoli** (*Brassica oleracea* var. *italica*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Brokkoli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Tenjiku’ (Kaneko Seeds)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill</td>
</tr>
<tr>
<td></td>
<td>30 cm between hills, four rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>267 hills/bed (267 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>74,105 hills/ha (= 7.4 plants/m2)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>3 grams (= 0.8 g/bed)</td>
</tr>
</tbody>
</table>

The standard operating procedures for broccoli correspond to those of cauliflower (chapter 5.3.1).

Harvesting:

- Broccoli is ready for harvesting about 45 to 60 days after transplanting, depending on cultivar and season.
- Mature broccoli heads are still compact (tight) and have no yellow color on the flower buds. Immature heads have a moody outer stem, may show yellow flower color and loads flower clusters.
- After harvesting heads, broccoli stems are trimmed to 10 to 20 cm long and the leaves removed.

5.3.3. **Head Cabbage** (*Brassica oleracea* var. *capitata*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Repolyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Apo Verde’ (EastWest Seed Company)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill</td>
</tr>
<tr>
<td></td>
<td>30 cm between hills, four rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>267 hills/bed (267 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>74,105 hills/ha (= 7.4 plants/m2)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>4 grams (= 0.8 g/bed)</td>
</tr>
</tbody>
</table>

The standard operating procedures for head cabbage correspond to those of cauliflower (chapter 5.3.1).

Harvesting:

- Harvest starts 50-60 days after transplanting.
o Heads should be firm to hard at harvest.
o The heads are cut at the base and the outer leaves are trimmed off.

5.3.4. Pak Choy/ Bok Choy (*Brassica rapa var. chinensis*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Pechay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Pavito’, ‘Black Behi’ (EastWest Seed Company)</td>
</tr>
</tbody>
</table>
| Planting Distance: | 1 plants/hill
| | 20 cm between hills, 4 rows per bed |
| Planting Density: | 400 hills/bed (= 400 plants/bed)
| | 111,111 hills/ha (=11.7 plants/m²) |
| 1000-seed weight: | 3 grams (= 1.2 g/bed) |

Climatic and soil requirements:
o Pak choy requires 8 hours direct sunlight and grows best on well-drained, loamy soils rich in organic matter and a soil pH between 6.5-7.0. It is sensitive to acid conditions below pH 6.0.

Sowing and seedling establishment:
o Use multi-cellular plastic trays or “lokong” and sow 1-2 seeds per cell;
o Cover with empty sacks until seeds germinate.

Transplanting:
o Transplant seedlings 21 days after sowing;
o Do thinning 1 week after to maintain 1 plant/hill;
o Provide some protection from the wind since young plants can bruise easily in windy conditions.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Chicken dung</th>
<th>DAP</th>
<th>Urea</th>
<th>Murate of Potash</th>
<th>Kieserite</th>
<th>Zinc Sulfate</th>
<th>Solabor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (at transplanting)</td>
<td>100.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st sidedress (1 WAT)</td>
<td>3.8</td>
<td>3.6</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Irrigation:
o Pak choy is shallow-rooted and requires frequent watering.
Major pests:
- Whitefly (*Bemisia tabaci*)
- Aphids (*Aphis* sp.)
- Diamond back moth (*Plutella xylostella*)
- Flea beetle (*Phyllotreta cruciferae*)

Major diseases:
- Head rot (*Rhizoctonia solani*)
- Clubroot (*Plasmodiophora brassicaceae*)

The control measures for pest and diseases follow those described for cauliflower (chapter 5.3.1). Large amounts of nitrogen may increase the incidence of bacterial soft rots.

Harvesting:
- Pak choy are usually harvested by hand, cut off at the base 35 to 50 days after sowing (2-4 weeks after transplanting).
- Harvest when leaves are fresh and crisp, and before the outer leaves turn yellow.

Post-harvest handling:
- Remove any dead or damaged leaves, trim the base and wash the plant.
- Harvested pak choy is very susceptible to wilting.

5.4. Cucurbitaceae (Cucurbits)

5.4.1. Bittergourd (*Momordica charantia*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Ampalaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar</td>
<td>‘Jade Star’, ‘Galaxy’ (East West Seed Co.)</td>
</tr>
<tr>
<td>Planting Distance</td>
<td>1 plant per hill, 50 cm between hills; 2 rows per bed</td>
</tr>
<tr>
<td>Plant Density</td>
<td>80 hills/bed (=80 plants/bed), 22,222 hills/ha (= 2.2 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight</td>
<td>60 grams (= 4.8 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:
- Most cucurbits are thriving well in hot and humid climates.
- Soil must be well-drained and rich in organic matter with a pH ranging from 5.5 – 7.0.

Planting:
Bittergourd is preferably planted by direct seeding into the beds compared to transplanting.

To promote germination, soak seeds in water 24 hours before sowing. Seeds are planted the following day or as the radicle breaks.

Place 1-2 seeds per hill about 2 cm deep. The seeds will germinate in 2-3 days.

Do thinning to maintain one plant per hill after 2-3 weeks.

Irrigation:

Irrigate cucurbit crops daily, especially during dry season. However, provide adequate drainage to avoid water logging.

Trellising:

- Use trellis to protect the fruits from rotting and malformation. Construct vertical and overhead trellis using ipil-ipil or bamboo poles with a combination of GI wire or nylon string.

Mulching:

- Mulching can help protect fruits from touching the ground as well as conserves soil moisture and prevents weeds from growing.

Crop maintenance:

- Vines should be pruned at the tips when female flowers start developing to encourage branching and fast bearing.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal application</td>
<td>Chicken dung 100.00 Complete (14-14-14) 18.0</td>
</tr>
<tr>
<td>1<sup>st</sup> sidedress (3 WAT)</td>
<td>9.0</td>
</tr>
<tr>
<td>2<sup>nd</sup> sidedress (6 WAT)</td>
<td>9.0</td>
</tr>
</tbody>
</table>

- Water immediately after applying fertilizers, since cucurbits are sensitive to high salt concentration.

Major pests and diseases:

- The fruits are subject to attack by fruit flies (*Bactrocera cucurbitae*) which can be prevented by wrapping fruits with newspaper when they are few centimeters long;
- Other major insect pests are the squash beetle (*Epilachna philippinensis*) and aphids (*Myzus persicae*);
Watermelon mosaic virus and other cucurbit viruses can be prevented by controlling vectors such as aphids and other sucking insects;

- Powdery mildew (*Erysiphe cichoracearum, Sphaerotheca fuliginea*) can be controlled by sulfur dust;
- Proper field sanitation such as removing and burning of infected plant parts as well as crop rotation are preventive measures.

Harvesting:
- Harvesting starts 45 to 50 days after seeding;
- Harvest fruits every 2-3 days when they are light green, tender and juicy with white flesh;
- Regular picking is important as fruits will become more bitter as they mature and will also hamper the growth of new fruits;
- Remove all deformed fruits to promote the production of normal fruits;
- Leave some healthy fruits to reach full maturity to harvest seeds for subsequent crops. When fully mature, the fruits will break open and release brownish seeds which can be collected, dried and stored.

5.4.2. Bottlegourd (*Lagenaria sicenaria*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Upo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar</td>
<td>‘Dalisay’ (East West Seed Company)</td>
</tr>
<tr>
<td>Planting Distance</td>
<td>1 plant per hill 50 cm between hills; 2 rows per bed</td>
</tr>
<tr>
<td>Plant Density</td>
<td>80 hills/bed (=80 plants/bed) 22,222 hills/ha (= 2.2 plants/m(^2))</td>
</tr>
<tr>
<td>1000-seed weight</td>
<td>150 grams (= 12 g/bed)</td>
</tr>
</tbody>
</table>

The standard operating procedures for bottlegourd correspond to those for bittergourd (see chapter 5.4.1).

Harvesting:
- The fruits of bottlegourd develop fast and require much attention at harvest time. It usually takes 15 days for fruits to reach marketable stage from the day of fruit set. Cut the peduncle approximately 5 cm long.
5.4.3. Sponge gourd (Luffa cylindrica)

<table>
<thead>
<tr>
<th>Local Name</th>
<th>Patola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar</td>
<td>‘Esmeralda’ (\text{(East West Seed Company)})</td>
</tr>
<tr>
<td>Planting Distance</td>
<td>1 plant per hill, 50 cm between hills; 2 rows per bed</td>
</tr>
<tr>
<td>Plant Density</td>
<td>80 hills/bed (=80 plants/bed), 22,222 hills/ha (= 2.2 plants/m(^2))</td>
</tr>
<tr>
<td>1000-seed weight</td>
<td>90 grams (= 7.2 g/bed)</td>
</tr>
</tbody>
</table>

The standard operating procedures for sponge gourd correspond to those for bittergourd (see chapter 5.4.1).

5.4.4. Cucumber (Cucumis sativus)

<table>
<thead>
<tr>
<th>Local Name</th>
<th>Pipino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar</td>
<td>‘Green Beret’ (\text{(East West Seed Company)})</td>
</tr>
<tr>
<td>Planting Distance</td>
<td>1 plant per hill, 40 cm between hills; two rows per bed</td>
</tr>
<tr>
<td>Plant Density</td>
<td>100 hills/bed (=100 plants/bed), 27,778 hills/ha (= 2.8 plants/m(^2))</td>
</tr>
<tr>
<td>1000-seed weight</td>
<td>25 grams (= 2.5 g/bed)</td>
</tr>
</tbody>
</table>

The standard operating procedures for cucumber correspond to those for bittergourd (see chapter 5.4.1).
5.5. Alliaceae (Onion Family)

5.5.1. Bulb Onion (*Allium cepa*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Sibuyas bombay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Red Pinoy’ (East West Seed Company)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill 15 cm between hills; 6 rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>800 hills/bed = (800 plants/bed) 222,222 hills/ha (= 22.2 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>3 grams (= 2.4 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:
- Onions grow well in friable and well-drained loam soil with good water holding capacity and a pH ranging between 6.0-7.0;
- Requires cooler weather during the early stages of growth and a dry atmosphere with moderately high temperature for bulb development and maturation.

Seedling production:
- Prepare a separate seedbed (1 m wide; length as needed) and incorporate compost and rice hulls into the top soil;
- Sow thinly and evenly about 10-15 g seeds in rows set across the bed 7-10 cm apart;
- Cover the seeds lightly with compost and mulch (either rice straw or grass clippings);
- Maintain adequate soil moisture;
- Protect the seedbed against direct sunlight and rain with nylon net or removable plastic tunnels;
- Reduce watering and expose seedlings to full sunlight 1 week before transplanting (4-6 weeks after sowing)

Transplanting:
- Seedlings are transplanted about 4-6 weeks after sowing;
- Gently uproot the seedlings to prevent root damage;
- Plant at a distance of 15 cm between plants and 15 cm between hills. Use markers for proper spacing and to facilitate transplanting.
- After marking, use dibbles to make holes;
- Plant deep enough, but not too deep. Place the white portion of the plant below the soil surface;
- Care must be taken so as not to damage the basal portion of the plant;
- Press the soil firmly around the basal portion;
- Irrigate the field before and after transplanting.

Irrigation:
- Onions require adequate moisture for steady, continuous and desirable growth;
- Stop irrigation 2-3 weeks before harvest, or when 20-30% of the tops fold over.

Weed control:
- Combine herbicide application with hand weeding to produce a good quality crop.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Compost</th>
<th>Ammonium Sulfate (21-0-0)</th>
<th>Super phosphate (0-18-0)</th>
<th>Muriate of potash (0-0-60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal application</td>
<td>100.00</td>
<td>21.25</td>
<td>33.00</td>
<td>5.00</td>
</tr>
<tr>
<td>1<sup>st</sup> sidedress (30 DAT)</td>
<td>7.50</td>
<td>-</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup> sidedress (45 DAT)</td>
<td>7.50</td>
<td>-</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>3<sup>rd</sup> sidedress (60 DAT)</td>
<td>7.50</td>
<td>-</td>
<td>2.50</td>
<td></td>
</tr>
</tbody>
</table>

Note: fertilizer amounts are on a per square meter not per hill basis

Major pests:
- Thrips (*Thrips tabaci*)
- Armyworm (*Spodoptera exigua*)
- Cutworm (*Spodoptera litura*)
- Leafminer (*Liriomyza spp.*)

Control measures:
- Manage weeds properly;
- Maintain sufficient population of natural enemies;
- Crop rotation;
- Application of appropriate insecticides as last resort.

Major diseases
- Purple blotch (*Alternaria porri*)
Leaf blight (*Botrytis* sp.)
- White-tip disease (*Phytophthora porri*)
- Downy mildew (*Peronospora destructor*)
- Pink root (*Pyrenochaeta terrestris*)
- Bacterial soft rot (*Erwinia carotovora*)
- Onion smut (*Urocystis cepulae*)

Control measures:
- Use resistant cultivars if available;
- Eliminate debris from previous crop and remove infected leaves;
- Practice crop rotation and soil solarization prior to planting;
- Regulate humidity through proper irrigation and drainage;
- Maintain good air circulation during curing, packing and storage;
- Application of appropriate fungicides.

Harvesting:
- Harvest when the leaf tops begin to fold over;
- Pull mature plants/bulbs manually from the soil.

Post-harvest handling:
- Dry harvested bulbs for 10-14 days in a sunny, well-ventilated area;
- Align onions in a way that the leaves of 1 onion cover the bulb of another;
- Clip dried leaves 4 cm from the stem and remove all roots;
- Grade bulbs according to size and quality;
- Pack in jute or net sacks for storage and/or immediate disposal.

5.5.2. Bunching onion (*Allium fistulosum*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Sibuyas dahonan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>Any locally available cultivar</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill</td>
</tr>
<tr>
<td></td>
<td>15 cm between hills; 6 rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>800 hills/bed (= 800 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>222,222 hills/ha (= 22.2 plants/m2)</td>
</tr>
</tbody>
</table>

Bunching onion does not form a real bulb. The plant has a green leaf portion and a long blanched white stalk portion. It grows in clumps with several tillers bunched together.
Climatic and soil requirements:
- Requires a cool climate, but can also grow in areas without extremes of heat and cold, and excessive rainfall;
- Grows well in friable and well-drained soils with good water holding capacity and a pH ranging between 6.0 – 7.0.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (grams/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compost</td>
</tr>
<tr>
<td>Basal application</td>
<td>100.00</td>
</tr>
<tr>
<td>Sidedress (3 WAT)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: fertilizer amounts are on a per square meter not per hill basis

Planting:
- Use only planting material free of diseases and insect pests;
- Trim the top portion of the tiller and the lower portion of the roots to reduce transpiration and increase plant survival;
- Transplant at a distance of 15 cm x 15 cm after applying basal fertilizers;
- Plant deep enough, but care must be taken not to damage the basal portion of the plant;
- Press the soil lightly around the basal portion;
- Make sure that the root is in full contact with the soil;
- Irrigate the field before and after planting.

Crop maintenance:
- Blanching of the stem is achieved by hilling-up soil during growth.

Harvesting:
- Start harvesting when there are more than five new tillers bunched together.
5.6. **Poaceae**

5.6.1. **Sweet Corn (Zea mays var. rugosa)**

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Mais</th>
</tr>
</thead>
</table>
| Recommended Cultivar | ‘Sweet Grande’ (East West Seed Company)
‘Sugar 73’; ‘Sugar 73’ (Syngenta Company); |
| Planting Distance | 1 plant per hill
30 cm between hills; two rows per bed |
| Plant Density | 133 hills/bed (= 133 plants/bed)
37,037 hills/ha (= 3.7 plants/m²) |
| 1000-seed weight | 133 grams (= 17.7 g/bed) |

Climatic and soil requirements:
- Sweet corn can adapt to a wide range of soils with pH values ranging from 5.3 – 7.3;
- It prefers well-drained soils that are rich in organic matter.

Seedling preparation:
- Sweet corn can be direct seeded but it grows best and more uniformly if transplanted;
- The preferred nursery media is composed of mixture of compost and vermicast at a ratio of 1:1.
- 1 seed is placed in each cell of the seed tray at a depth of 1 cm.

Transplanting:
- Seedlings are transplanting in the prepared beds 8-10 days after sowing, preferably in the afternoon after 3 pm.

Irrigation:
- Since sweet corn has a relatively shallow root system it requires adequate watering, particularly during silking, tasseling and ear development.

Weeding:
- Remove weeds to avoid competition for water and nutrients and to provide an unfavorable environment for rodents and other pests;
- Weeds are removed manually 10-15 days after transplanting before the 1st sidedress fertilizer application;
Before the 2nd sidedress application, weeds should be removed again either manually or by using contact herbicide (e.g. gramoxone).

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chicken dung</td>
</tr>
<tr>
<td>Basal application</td>
<td>100.00</td>
</tr>
<tr>
<td>1st sidedress (1 WAT)</td>
<td>-</td>
</tr>
<tr>
<td>2nd sidedress (4 WAT)</td>
<td>-</td>
</tr>
</tbody>
</table>

Major pests:

- Cutworm (*Spodoptera litura*)
- Cornborer (*Ostrinia fornicatales*)
- Earworm (*Helicoverpa armigera*)

Control measures:

- First application of 3 g furadan per cell during sowing in seed trays, this will protect the crop for 30 days;
- Second application of 3 g furadan per hill during second sidedress;
- Hanging of trichocards 30 and 60 days after transplanting;
- In case trichocards are not available, application of liquid insecticides (with a waiting time of 7 days) will do as a follow-up application if any earworms attack. *Bacillus thuringiensis* (Bt) products are another biological insecticide alternative;
- If insecticides are used, choose a sprayer that is suitable for sweet corn plant architecture, such as a mist sprayer. Control of insects such as the earworm requires that sprays be directed on the green silk. Spraying may be necessary every seven days depending on pest pressure.

Major diseases:

- Stalk rot (*Fusarium* spp.)
- Southern leaf blight (*Bipolaris maydis*)

Control measures:

- *Fusarium* fungi survive on corn residues in soil and on seed. Stalk rot is associated with moisture stress and over-fertilization. Control stalk rots by good field sanitation, rotating with non-related crops, planting in well drained soils, and by avoiding excess nitrogen application;
As a preventive measure against *fusarium*, 1 pack of *Trichoderma harzianum* is diluted in one sprinkler (8 l) and evenly applied to sweet corn seedlings in the nursery 1 week after sowing, shortly before transplanting.

If the disease has occurred already, 2 packs of *Trichoderma* are mixed thoroughly in one knapsack sprayer (16 l) and applied to affected plant parts.

Use plants that are resistant to Southern leaf blight as first line of defense against this disease. If necessary, fungicides such as Chlorothalonil and Mancozeb can also be used.

Physiological disorders:

Incomplete kernel development or shriveled kernels may be caused by poor pollination during hot and dry weather. Heavy rains during tasseling can wash off pollen or cause it to stick to the tassel, hence, reducing pollination.

Thinning:

Thinning of cobs to maintain only 1 cob per plant is done to attain good size and quality.

Harvesting:

Sweet corn is ready to harvest about 3 weeks after silk emergence or 70 – 75 days from planting;

Ripe ears have a dried silk and are full to the touch.

Ripe kernels will be plump and squirt a milky liquid when punctured by the thumbnail.

Sweet corn should be harvested when field heat is low, preferably in the morning.

Post-harvest handling:

If the sweet corn is to be sold in a distant market, the ears can be cooled in water to remove any field heat and are top iced;

Most sweet corn cultivars have a shelf life of 4 to 6 days while the supersweet varieties can have a shelf life of up to 10 days.
5.7. Malvaceae

5.7.1. Ladies’ Finger \textit{(Abelmoschus esculentus)}

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Okra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar</td>
<td>‘Smooth Green’ (East West Seed Company)</td>
</tr>
<tr>
<td>Planting Distance</td>
<td>1 plant per hill; 30 cm between hills; two rows per bed</td>
</tr>
<tr>
<td>Plant Density</td>
<td>133 hills/bed (=133 plants/bed); 37,037 hills/ha (= 3.7 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight</td>
<td>30 grams (= 4 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:
- Okra is a warm-weather plant, with a preferred temperature range of between 22°C and 35°C. Well-drained soils rich in organic matter and with a pH of 5.8 to 6.5 and are preferred.

Seedling production:
- Either “lokong” using banana leaves or using multi cellular trays are used for seedling establishment;
- Sow 1-2 seeds per cell/lokong.

Transplanting:
- Transplant seedlings after they have 3-4 true leaves on top of the basal fertilizers which are covered with a thin layer of soil;
- Do thinning to maintain 1 plant/hill before 2nd sidedress.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Type and amount of fertilizer (gram/hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compost Complete (14-14-14)</td>
</tr>
<tr>
<td>Basal application</td>
<td>150.00 15.0</td>
</tr>
<tr>
<td>1st sidedress (4 WAT)</td>
<td>10.0</td>
</tr>
<tr>
<td>2nd sidedress (7 WAT)</td>
<td>10.0</td>
</tr>
<tr>
<td>3rd sidedress (10 WAT)</td>
<td>10.0</td>
</tr>
</tbody>
</table>

\textit{WAT} – weeks after transplanting

Crop maintenance:
All mature pods have to be removed from the plants as soon as possible since any mature pods left on the plant will reduce future yield. Major pests and diseases:
o Okra is very susceptible to damage by nematodes. Okra should not follow vine crops such as squash and sweet potatoes. These crops tend to increase nematode population;

o Practice crop rotation. Marigold as a pre-crop is recommended;

o Maintain sanitation within the field and its periphery, prune all leaves below the lowest fruit and burn infected leaves to prevent the spread of fungal diseases;

o The incidence of Fusarium wilt is much greater when root-knot nematodes are present. Nematode control is a major practice in reducing Fusarium wilt presence;

o Other pests of okra are aphids, stink bugs and corn borers.

Harvesting:

- Fresh market okra is usually graded into these sizes:
 - Fancy (pods up to 9 cm long.)
 - Choice (pods form 9 – 11.5 cm long.)
 - Jumbo (pods over 11.5 cm but still tender)

- Pods develop very fast. It takes only eight days from bloom to the reach jumbo pod size;

- To get a maximum of fancy and choice pods, harvest must be done daily using a sharp knife.

5.8. **Convolvulaceae (Morning Glory Family)**

5.8.1. **Sweet Potato (Ipomea batatas)**

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Kamote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar</td>
<td>‘JKO 18’ (NOMIARC)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill 30 cm between hills; two rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>133 hills/bed (= 133 plants/bed) 37,037 hills/ha (= 3.7 plants/m2)</td>
</tr>
<tr>
<td>Planting Material:</td>
<td>terminal cuttings of 30 cm length</td>
</tr>
</tbody>
</table>

Climatic and soil requirements:

- Sweet potatoes require well-drained, light, sandy loam, or silt loam soil with soil pH ranges from 5.0 to 7.0. Rich, heavy soils produce high yields of low quality roots;

- Both surface and internal drainage are important in selecting a field. Soils with poor internal drainage cause sweet potato roots to be large, misshapen, cracked, and rough skinned.
Planting and fertilization:
- Beds have to be well prepared to make the soil friable and free of weeds;
- Freshly cut terminal cuttings of 30 cm length are used as planting material. These distal tips are usually free of weevil eggs and larvae. Older portions of the vines may be infested. Cuttings may be soaked in an insecticide solution prior to planting to prevent weevil outbreak.
- Apply 100 grams of compost and 10g of DAP per hill and cover fertilizer with a thin layer of soil to avoid direct contact with the cuttings;
- Plant 1 cutting per hill spaced at 30 cm between hills.

Irrigation:
- Sweet potato needs sufficient moisture for the first two months after planting.

Weeding and hilling-up:
- Weeding and hilling-up should be done 25-30 days after planting. Thereafter, spot weeding is sufficient until vines cover the bed.

Common pest and diseases:
- The sweet potato weevil (Cylas formicarius) attacks both stem and roots. To control the pest, use crop rotation and practice proper field sanitation. If water availability is not a problem, and if feasible, flood the field for one or two weeks to kill weevils by drowning.
- Plants infected with the stem and foliage Scab (Sphaceloma batatas) show oblong to elongated scab lesions on the stems and leaves. To control, use disease free cuttings and practice crop rotation. Copper and manganese fungicides may effectively control the disease.

Harvesting:
- Harvesting is done at 110-120 days from planting. Roll vines for easy location of sweet potato roots, and use bolo in digging the roots.

Post-harvest handling:
- Clean but do not wash, sweet potato before storing. Sort the roots by separating the bigger from the smaller ones.
5.8.2. Upland Kangkong (*Ipomea reptans*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Kangkong, Tangkong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>‘Tsina LP’ (East West Seed Company)</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>1 plant per hill 5 cm between hills, two rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>800 hills/bed (= 800 plants/bed) 222,222 plants/ha (= 22.2 plants/m²)</td>
</tr>
<tr>
<td>1000-seed weight:</td>
<td>40 grams (= 32 g/bed)</td>
</tr>
</tbody>
</table>

Climatic and soil requirement:
- Kangkong produces optimum yields in tropical lowland under stable high temperatures and short daylengths. It prefers soils with high levels of organic matter and pH levels of 5.6 to 6.5.

Direct seeding:
- Kangkong is usually direct seeded. However, cuttings may be also used for propagation;
- Make shallow lines (10 cm deep) along the bed before sowing;
- Drill 200 g of complete fertilizer (14-14-14) per linear meter;
- Cover the complete fertilizer at a rate of 500 g compost per linear meter;
- Place 1 seed per hill on top of the compost and cover with topsoil.

Irrigation:
- Water the plants regularly;
- Mulch with rice straw or rice hull to reduce watering.

Pest and disease management:
- Caterpillars, whiteflies and aphids may cause serious damage;
- Control diseases such as white rust by regular pruning of stems;
- Crop rotation, field sanitation and adequate plant spacing can reduce occurrence of insect pests and diseases.

Harvesting:
- Harvest by cutting young shoots cut about 5-10 cm above the ground at 18-25 days after sowing and subsequently at regular intervals;
- Uprooting of the whole plant can also be practiced at 18-25 days after sowing, depending on market demand. This will also minimize incidence of pests and diseases.

Seed production:
\[
\begin{align*}
\text{o} & \quad \text{Select plants that are vigorous, disease-free and uniform in plant characteristics for seed production. It will take 5–6 months to complete the seed cycle;}
\text{o} & \quad \text{Sun-dry until the husk is brittle enough for seed extraction;}
\text{o} & \quad \text{Each fruit contains 3–4 seeds.}
\end{align*}
\]

5.9. **Asteraceae (Compositae)**

5.9.1. **Lettuce (Lactuca sativa)**

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Letsugas</th>
</tr>
</thead>
</table>
| **Recommended Cultivar** | ‘Box Hill’ (head type) (Yates)
‘Simpson’ (loose leaf type) (Ramgo) |
| **Planting Distance** | 1 plant per hill
30 cm between hills; three rows per bed |
| **Plant Density** | 200 hills/bed (= 200 plants/bed)
55,400 hills/ha (= 5.5 plants m\(^2\)) |
| **1000-seed weight** | 3.3 grams (= 0.7 g/bed) |

Selection of cultivar:
\[
\begin{align*}
\text{o} & \quad \text{Lettuce is usually a cool season crop that does not form heads under the climatic conditions of the lowland. Few cultivars, however, form heads during the cooler months of the year in lower elevations.}
\text{o} & \quad \text{Loose leaf type lettuce is more suitable for warmer areas. They mature quickly and can be constantly harvested}
\end{align*}
\]

Climatic and soil requirements:
\[
\begin{align*}
\text{o} & \quad \text{Optimum temperature for head forming is below 20 °C}
\text{o} & \quad \text{Lettuce requires well-drained, fertile soils with high organic matter content and good water-holding capacity.}
\text{o} & \quad \text{Soil pH should be between 6.0 to 6.8 since lettuce is very sensitive to soil acidity.}
\end{align*}
\]

Nursery:
\[
\begin{align*}
\text{o} & \quad \text{Sow the seeds in rolled banana leaves (lokong) or in seed trays using plain vermicast or compost (1 seed per cell).}
\text{o} & \quad \text{Drench the soil media with a trichoderma solution (1 pack trichoderma per sprinkler) to minimize soil-born diseases;}
\text{o} & \quad \text{Cover with sacks until germination;}
\text{o} & \quad \text{Observe regular watering using fine sprinkler or a knapsack sprayer to maintain the ideal soil moisture;}
\end{align*}
\]
- Harden the seedlings one week before transplanting;
- Transplant the plants 21 days after sowing when the seedlings have 4-6 true leaves

Planting:
- Layout the planting area (bed) using quincunx style at three rows in a bed and 30 cm distance between hills.

Fertilization scheme:

<table>
<thead>
<tr>
<th>Schedule of application</th>
<th>Compost</th>
<th>Complete (14-14-14)</th>
<th>Urea (46-0-0)</th>
<th>Kieserite</th>
<th>Solubor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (at transplanting)</td>
<td>100.0</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1<sup>st</sup> sidedress (1 WAT)</td>
<td>-</td>
<td>-</td>
<td>3.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2<sup>nd</sup> sidedress (3 WAT)</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Water management:
- Since lettuce is shallow rooted it requires frequent watering to maintain enough available moisture which is needed to keep plants actively growing.

Major pests and diseases:
- Although lettuce is not much attacked by insects, aphids, white flies, leaf miner and leafhopper may cause some damage.
- Some diseases such as damping-off, downey mildew and bottom rot may occur.
- Numerous cultural practices can reduce the incidence of theses diseases, including crop rotation, field sanitation, adequate plant spacing.

Harvesting:
- Harvesting should be done early in the morning when leaves are crispy;
- Head lettuce will be ready for harvesting 50 to 60 days after transplanting; cut only those heads that are firm. Leave 3 to 4 "wrapper" leaves to protect the head.
- Most leaf types are ready in 35 to 45 days after transplanting. Harvest has to be done very 2 to 3 days, depending on moisture and temperature.
Post-harvest handling:
- Pre-cool head lettuce to a desired transit/storage temperature soon after harvest to remove field heat.
- Loose leaf lettuce is soaked in clean chlorinated water to dehydrate; to remove soil particles, the lettuce is held upside down in water by the stem and gently agitated.

5.10. Basellaceae

5.10.1. Malabar Spinach (*Basella rubra*; *Basella alba*)

<table>
<thead>
<tr>
<th>Local Name:</th>
<th>Alugbati</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Cultivar:</td>
<td>None (use any local planting material).</td>
</tr>
<tr>
<td>Planting Distance:</td>
<td>3 cuttings/hill</td>
</tr>
<tr>
<td></td>
<td>30 cm between hills, three rows per bed</td>
</tr>
<tr>
<td>Plant Density:</td>
<td>200 hills/bed (= 600 plants/bed)</td>
</tr>
<tr>
<td></td>
<td>55,556 hills/ha (= 16.7 plants/m²)</td>
</tr>
</tbody>
</table>

There are two common types of Malabar spinach. *Basella alba* has dark-green, oval or almost round leaves while *Basella rubra* has green, oval-round leaves, and red stems.

Climatic and soil requirements:
- Malabar spinach grows well in hot, humid climates. Partial shading will produce larger leaves compared to when grown under full sunlight.
- Daylengths shorter than 13 hours result in flowering.
- The crop grows best on soils supplied with organic matter and a soil pH ranging from 5.5 to 8.0.

Cultural management practices:
- Basella is usually transplanted using cuttings but can also be direct seeded. Direct seeding is appropriate when plenty of seed is available.
- Bed should be harrowed once prior to planting.
- Fertilize with 100 g chicken dung and 10 g complete (14-14-14) per hill before planting.
- Cover fertilizer with soil to avoid burning.
- Plant 3 cuttings in each hill at 20-25 cm length/cutting with leaves removed.
- Cultivate by hilling up the soil with a garden hoe.
Major pests and diseases:
- Basella is susceptible to damage by foliar insects such as leafminers and cutworms. Root-knot nematode may sometimes be a serious pest.
- *Cercospora* and *Alternaria* leaf spot are major diseases.
- Crop rotation, field sanitation, and adequate plant spacing can reduce the incidence of the disease.

Harvesting:
- Harvest starts 28 days after planting.
- Cut the shoots 15 to 30 cm long with a harvesting knife.
- Weekly or bi-weekly harvesting may follow if there is a vigorous and abundant growth.
- Frequent harvesting delays flowering and stimulates growth of side shoots.

Post-harvest handling:
- Malabar spinach has a large surface-to-volume ratio and loses water easily;
- To reduce water loss, harvest during the cooler time of day, such as early morning or late afternoon. Keep the produce in a cool shaded place.

5.11. Herbs

Herbs for culinary purposes, for scents and fragrances, for medicinal uses or others (dyes, dried floral arrangements etc.) are getting increasingly popular in the Philippines and offer a niche market for allotment gardeners. Some of these herbs also have insect repellant effects and may be used for ecological pest management strategies.

Among the herbs that are already grown in some of the allotment gardens of Cagayan de Oro are different kinds of basil (*Ocimum basilicum*), chives (*Allium schoenoprasum*), coriander/cilantro (*Coriandrum sativum*), dill (*Anethum graveolens*), Lemongrass/citronella (*Cymbopogon* sp.), lemon balm (*Melissa officinalis*), marjoram (*Origanum majoran*), European oregano (*Origanum vulgare*), parsley (*Petroselinum hortense*), peppermint (*Mentha piperita*), stevia (*Stevia rebaudiana*), rosemary (*Rosmarinus officinalis*), rocket/rucola (*Eruca sativa*) and thyme (*Thymus vulgaris*). General guidelines for production of herbs are:

- Herbs are usually propagated by sowing or through cuttings.
Fertilizer requirements are basic, usually being limited to N, P, and K.

Herbs are seldom attacked by insects. Proper rotation and field sanitation can reduce the risk of many diseases.

Harvest timing is specific to the herbs being produced.

The harvested product often requires immediate special handling to best preserve its color, aroma, flavor, the integrity of its appearance and sanitary condition.

5.12. Other Vegetables

Following is a list of additional vegetables - although not complete - that can either be planted on beds or as border crops:

<table>
<thead>
<tr>
<th>English Name</th>
<th>Local Name</th>
<th>Botanical Name</th>
<th>Botanical Family</th>
<th>Harvested Plant Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranth</td>
<td>Kulitis</td>
<td>Amaranthus viridis</td>
<td>Amaranthaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>Taro</td>
<td>Gabi</td>
<td>Colocasia esculenta</td>
<td>Araceae</td>
<td>Tubers, Leaves</td>
</tr>
<tr>
<td>Melon</td>
<td>Milon</td>
<td>Cucumis melo</td>
<td>Cucurbitaceae</td>
<td>Fruits</td>
</tr>
<tr>
<td>Squash</td>
<td>Kalabasa</td>
<td>Cucurbita maxima</td>
<td>Cucurbitaceae</td>
<td>Fruits</td>
</tr>
<tr>
<td>Watermelon</td>
<td>Pakwan</td>
<td>Citrullus lanatus</td>
<td>Cucurbitaceae</td>
<td>Fruits</td>
</tr>
<tr>
<td>Purple yam</td>
<td>Ube</td>
<td>Dioscorea alata</td>
<td>Dioscoreaceae</td>
<td>Tubers</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td>Kadios</td>
<td>Cajanus cajan</td>
<td>Fabaceae</td>
<td>Seeds</td>
</tr>
<tr>
<td>Sesban</td>
<td>Katuray</td>
<td>Sesbania grandiflora</td>
<td>Fabaceae</td>
<td>Flowers</td>
</tr>
<tr>
<td>Horseradish tree</td>
<td>Malunggay</td>
<td>Moringa oleifera</td>
<td>Moringaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>Pepper (hot)</td>
<td>Sili</td>
<td>Capsicum frutescens</td>
<td>Solanaceae</td>
<td>Fruits</td>
</tr>
<tr>
<td>Jute</td>
<td>Saluyot</td>
<td>Corchorus olitorius</td>
<td>Tiliaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>Ginger</td>
<td>Luy-a</td>
<td>Zingiber officinale</td>
<td>Zingiberaceae</td>
<td>Rhizome (underground stem)</td>
</tr>
</tbody>
</table>
6. Ecological Sanitation

6.1. Conventional Sanitation Systems

One person produces about 500 liters of urine and 50 liters of faeces per year, and, if using water for flushing, produces about 10,000 to 20,000 liters of wastewater, depending on the local situation. In the Philippines as in most developing countries, more than 90% of the sewage is discharged without treatment, polluting rivers, lakes and coastal areas, thus, causing serious problems of pollution and public health.

6.2. Closing the Loop

Ecological sanitation is an alternative to the linear approaches to carry waste (excreta, soapy water, etc.) to water bodies. It is based on an ecosystems approach where the nutrients and organic matter contained in human excreta are considered as a resource, and are properly treated for contribution to food production.

Ecological sanitation can be viewed as a three-step process dealing with human excreta: (1) Containment, (2) Sanitization, (3) Recycling. The objective is to protect human health and the environment while limiting the use of water in sanitation systems for hand (and anal) washing only and recycling nutrients to help reduce the need for artificial fertilizers in agriculture.

An essential step in the process of sanitation is the containment of pathogens that can cause disease. Without containment and sanitization, a vicious circle develops where the pathogens in excreta are released back into the environment, re-infect people through consumption of contaminated water or food, and are then excreted again, only to begin the cycle over.

6.3. Characteristics of Ecological Sanitation

Ecological sanitation systems are designed around true containment and provide two ways to render human excreta innocuous: dehydration and decomposition. The Ecosan concept is based on following principles:

- Prevent diseases (must be capable of destroying or isolating faecal pathogens);
- Protect the environment (must prevent pollution and conserve valuable water resources);
Return nutrients (must return plant nutrients to the soil);
Culturally acceptable (must be aesthetically inoffensive and consistent with cultural and social values);
Reliable (must be easy to construct and robust enough to be easily maintained in a local context);
Convenient (must meet the needs of all household members considering gender, age and social status);
Affordable (must be affordable and accessible).

6.4. Urine-Diverting Dehydration Toilets

Urine-Diverting Dehydration Toilets (UDDT) have been established in all allotment gardens of Cagayan de Oro. They do not pollute nor produce waste water, since human waste is diverted, sanitized and recycled in a safe way. UDD toilets do not need a central water supply or sewage system. They collect and treat faeces and urine separately.

A special bowl (“UDDD bowl”) with two compartments for urine and faeces segregation is used. A urinal for men can be added. The urine is stored in a plastic container and applied as fertilizer after 1 month of storage to ensure pathogen die-off.

The faeces are collected in a vault (substructure). The substructure must be constructed in such a way that there will be no leakages into the soil. It can consist of a single chamber with a mobile container or of 2 chambers. The 2-chamber model functions as collection and treatment unit at the same time. It has the advantage that the second chamber can be used while the faeces in the first chamber are left for storage. The design of the toilet makes it easily adaptable to different types of communities.

An essential step in introducing UDD toilets is social preparation of all stakeholders. Sustainability will only be achieved if the future users of the UDDT and of the treated excreta fully understand and accept the ecosan concept. Although the handling is easy to learn, a sound training is indispensable. Therefore several interventions have to be conducted to ensure stakeholder participation right from the start. These interventions should include an orientation about the Ecosan philosophy, technical, social and health aspects as well as the safe re-use. It is highly recommended to set up user groups for information exchange and mutual support in operating the facilities.
6.4.1. Maintenance of a UDD Toilet

Well-constructed and well-maintained UDD toilets do not develop bad odors, nor attract flies. The following has to be observed:

- The design of the toilet must ensure that the urine is directly diverted and does not touch the faeces.
- The faeces are directed into a chamber or container and are covered with dehydration materials such as prepared soil, ashes, lime and/or sawdust/rice hulls.
- The faeces chamber must always be kept completely dry.
- An ample supply of covering material must be available.
- Always close the toilet bowl lid to prevent flies from entering.
- For wipers, throw toilet paper in separate trash can; since the toilet is dry, paper will not decompose.
- For washers, use the separate anal washing area.
- Make sure that water is always available for anal and hand washing.
- Clean the bowl outside the toilet. A stick with a damp cloth can also be used to clean the bowl.
- Use a mop or wet cloth to clean the floor to avoid getting the faeces wet.
- Place “user’s guidelines” inside the toilet for those persons who are not familiar on how to use a UDD toilet.

6.5. Agricultural Aspects of Ecological Sanitation

A grown-up person produces an average of 500 liters of urine and 50 kg/faeces per year. The following table converts this amount into nutrient equivalents for N, P and K:

<table>
<thead>
<tr>
<th></th>
<th>Nitrogen (kg/capita)</th>
<th>Phosphorous (kg/capita)</th>
<th>Potassium (kg/capita)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td>2.3</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Feces</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>2.7</td>
<td>0.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The nutrient values of table 4 can be converted in the following fertilizer equivalents:
Table 5: Fertilizer equivalents (kg/capita and year) of annual excretion of nutrients per person

<table>
<thead>
<tr>
<th></th>
<th>Complete (14-14-14)</th>
<th>Urea (46-0-0)</th>
<th>MOP (0-0-60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faeces</td>
<td>1.60</td>
<td>0.17</td>
<td>0.44</td>
</tr>
<tr>
<td>Urine</td>
<td>4.93</td>
<td>3.48</td>
<td>0.52</td>
</tr>
<tr>
<td>Total</td>
<td>6.53</td>
<td>3.65</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Table 6 shows the monetary value\(^3\) of these fertilizer amounts:

Table 6: Monetary equivalents (PhP/capita and year) of annual excretion of nutrients per person

<table>
<thead>
<tr>
<th></th>
<th>Amount (kg/year)</th>
<th>Cost (PhP/kg)</th>
<th>Subtotal (PhP/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete (14-14-14)</td>
<td>6.53</td>
<td>20.40</td>
<td>133.21</td>
</tr>
<tr>
<td>Urea (46-0-0)</td>
<td>3.65</td>
<td>10.80</td>
<td>39.42</td>
</tr>
<tr>
<td>MOP (0-0-60)</td>
<td>0.96</td>
<td>21.40</td>
<td>20.54</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>193.17</td>
</tr>
</tbody>
</table>

6.5.1. Reuse of Treated Urine

- After the last urination, remove container from UDD toilet and store urine undiluted and in a closed container for 1 month to eliminate all pathogens.
- Storage in a sealed container prevents contact with humans or animals and hinders evaporation of ammonia.
- During storage, the urine should not be diluted to provide a harsher environment for micro-organisms.
- Prior to application to crops dilute at a rate of 1 part urine with 4-5 parts of water.
- Urine can be considered as a liquid fertilizer since nutrients in urine are mostly water soluble, hence, are directly available for plant uptake.
- Urine should not be sprayed on plants but incorporated into the soil 10 cm away from the plant. This will reduce odor, foliar burns and the loss of nitrogen.
- Urine may also be applied through drip irrigation systems. However, clogging of emitters by salt precipitation may occur.

\(^3\) Based on average fertilizer price in Cagayan de Oro in January 2008
o Observe a waiting period of one month from last urine application to harvest of crops.
o Urine should not be applied to crops that are consumed raw (cucumber, lettuce, etc.) to ensure acceptance by costumers.

6.5.2. Reuse of Treated Faeces

o For safe reuse of faeces, treatment is a must to prevent spreading of pathogens.
o Faeces should be kept in the storage chamber of the UDD toilet for 6-12 months after the last defecation. Thereafter it should be subjected to a secondary treatment:
 - 60 days of vermicomposting
 - aerobic composting where a temperature of > 50°C should be obtained during at least one week in the compost heap
o After secondary treatment has occurred, it can be used like any other organic fertilizer where nutrients are slowly released as faeces is degraded in the soil by soil organisms.
o To ensure acceptance of vegetable produce by customers and to minimize health risks, it is recommended to use treated faeces not for vegetables but for fruit trees (banana, papaya, etc) or other tree species, where the harvested plant part is at a certain distance from the soil.

6.5.3. Heavy Metals and Micro-pollutants in Human Excreta

Heavy metals:
o Their presence is generally low or very low in excreta and depends on amounts present in consumed product.

Hormones:
o Are excreted with the urine;
o Have long been excreted in terrestrial environments by mammals;
o Vegetation and soil microbes are adapted to and can degrade these hormones;
o Probably a very low risk when applied on soil based on available data.

Pharmaceutical substances:
o Are degraded in natural environments with a diverse microbial activity.
o Risks associated with them are small.
7. Special Allotment Garden Events

7.1. Launching of the Allotment Garden

The launching of the allotment garden is an activity wherein the project officially opens and promotes its socio-economic and environmental objectives and benefits to the public. Following are some guidelines for a successful launching activity:

- Identify those people who were involved and contributed to the project (e.g. Barangay Chairman and Council, City government, University, funding agencies), including other guests and speakers for the event.
- Install a signboard at the entrance of the allotment garden with the name of the garden mentioning the institutions that were essential in setting up and realizing the project.
- Make a program of activities
 - Send invitations to all persons involved in the program as well as to all the guests two weeks before the launching.
 - Do not forget to follow up to confirm their participation so that there still time to look for other speakers in case they are not available. Do not forget to attach also a copy of the program with the sketch of the site.
 - Assign a master of ceremony, who could be either from the Barangay or from among the organizers.
 - Invite the media (radio stations, newspaper, television, etc).
- Coordinate with the Barangay and the allotment gardeners through the technician assigned in the area to discuss their contribution and concerns for the launching, e.g. sound system, tables and chairs, flags.
- It is highly recommended that a Priest from the Barangay blesses the new garden.
- Assign a “person-in-charge” for every duty, to make the work easy and organized.
- Have a meeting, present and discuss the responsibilities of each person to make their assignments clear.
- Check which duties have been completed already:
 - Communication with the person in charge of every task is very important for better coordination.
 - Always update the coordinator and technician with the good and bad points to ensure that all of the tasks are properly carried out.
Little things can be easily forgotten. Make a list of the materials needed during the launching. Examples are:
- Scotch tape, ball pen, sign pen, stapler and staple wire;
- Ribbons to officially open the ceremony;
- Two pieces of scissors for the ribbon cutting;
- Candles for the blessing of the site;
- Guestbook, to identify the guests and their designation; it can be used during the acknowledgement of the guests and participants;
- Information materials (e.g. signboard, streamers, posters);
- Chairs and tables for the guests and project partners;
- Sound system with microphone (including the National Anthem);
- Other materials (e.g. back draft, flowers, tablecloth, canvas, consider the weather, flags);
- Certificates or plaques to acknowledge the efforts of the people involved in establishing the garden;
- Food for thanksgiving.

7.2. St. Gertrude Day
The patron saint of the gardeners is St. Gertrude of Nivelles. The different allotment garden associations alternate annually as location in hosting the “St. Gertrude Day”, which is celebrated every March 17 of the year. The event starts with a Catholic Mass at the garden site, which includes floral offerings and a special prayer for the gardeners.

This is followed by a colorful parade from the garden site to the barangay hall, where vegetables, flower, fruits and other garden products are displayed and sold to the local community. The event may also be used as a general assembly for the gardeners to discuss specific issues related to allotment gardening.

Other patron saints related to gardening are:
- St. Fiacre (feast day celebrated on 30 August) is most renowned as the patron saint of growing food and medicinal plants, especially herbs.
- St. Phoacas (feast day celebrated on 23 July) is the patron saint for agricultural workers, farm workers, farmers, field hands and gardeners.
7.3. **Allotment Garden Day**

The Cagayan de Oro Allotment Garden Day is an annual event jointly organized by Xavier University College of Agriculture and the Cagayan de Oro City Government to search for the best allotment garden and best allotment gardener of the city. Minor awards are given to the growers of the sweetest sweet corn, the longest bottlegourd, bittergourd and eggplant as well as the biggest squash.

Evaluators come from the academe, the city government and the private sector. At least three months prior to the event, the allotment gardeners are informed about the criteria in order to give them enough time to prepare for the evaluation.

7.3.1. **Best Allotment Garden**

The criteria for the best allotment garden are:

- **Solid waste management (10 %)**
 - Availability of waste segregation facilities
 - Area is trash free

- **Maintenance of tool shed and nursery (25 %)**
 - Nursery
 - Community tools
 - Pesticide cabinet
 - Tool cabinet
 - Rainwater catchment

- **Compost area (10 %)**
 - Amount of compost
 - General appearance

- **Ecosan toilet (15 %)**
 - Overall cleanliness
 - Reuse of urine
 - Secondary treatment of faeces

- **Crop maintenance (20 %)**
 - Family name of gardeners at parcela
 - Beds are labeled with plant name & botanical family
 - Diversity of crops planted
 - General crop stand

- **Association activities (20 %)**
 - Regularity of meetings
 - Function of members
 - Presence of saving account
 - Transparency of records
The garden with the highest score is selected as the best allotment garden of the city.

7.3.2. **Best Allotment Gardener**

Each allotment garden association nominates one candidate based on the following criteria:

- General performance of crops grown (20 %)
 - implements standard operating procedures
- Crops produced (20 %)
 - based on production/sales record
- Relation with other gardeners (40 %)
 - Willing to help others (‘*bayanihan*’)
 - Willing to share gardening experiences with others;
 - Willing to do community works for establishing and maintaining the allotment garden and its facilities;
 - Is considered a model for others
- Activities in allotment garden association (20 %)
 - Performance of function as association member

The evaluation committee then selects the best allotment gardeners among the proposed candidates from the different associations.
8. Budget

8.1. Budget for Establishing one Allotment Garden

The costs for establishing an allotment garden greatly depend on the size of the garden, the number of gardening families, the period and degree of assistance. In Cagayan de Oro, the costs for the materials needed to establish an allotment garden for 10 families, including the seeds and other inputs for two cropping seasons, are about 300,000.00 Pesos. This amount does not include the salaries for the technicians as well as costs for capacity building activities and overhead costs of the implementing organization. The budget details are as follows (and may differ dependent on the actual situation):

Land Preparation:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unit</td>
<td>Transportation</td>
<td>3,500.00</td>
</tr>
<tr>
<td>1</td>
<td>unit</td>
<td>Plowing & harrowing</td>
<td>7,000.00</td>
</tr>
<tr>
<td>2</td>
<td>years</td>
<td>Land rental (0.5 ha)</td>
<td>12,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>22,500.00</td>
</tr>
</tbody>
</table>

Fencing Materials:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>rolls</td>
<td>Hog Wire</td>
<td>22,950.00</td>
</tr>
<tr>
<td>2</td>
<td>sacks</td>
<td>Cement</td>
<td>320.00</td>
</tr>
<tr>
<td>2</td>
<td>kg</td>
<td>Tie Wire</td>
<td>98.00</td>
</tr>
<tr>
<td>15</td>
<td>pcs</td>
<td>Angle bars (3/16 x 1 1/2 x 5 ft.)</td>
<td>6,000.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Metal saw</td>
<td>25.00</td>
</tr>
<tr>
<td>1</td>
<td>load</td>
<td>Mixed sand</td>
<td>350.00</td>
</tr>
<tr>
<td>3</td>
<td>pcs</td>
<td>6mm kabilya</td>
<td>150.00</td>
</tr>
<tr>
<td>3</td>
<td>loads</td>
<td>Crushed gravel (1")</td>
<td>2,220.00</td>
</tr>
<tr>
<td>250</td>
<td>pcs</td>
<td>Hollow blocks</td>
<td>1,250.00</td>
</tr>
<tr>
<td>250</td>
<td>pcs</td>
<td>Bricks</td>
<td>1,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>34,363.00</td>
</tr>
</tbody>
</table>

Tool Room:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>pcs</td>
<td>Columns 4x4x10</td>
<td>1,008.00</td>
</tr>
<tr>
<td>18</td>
<td>pcs</td>
<td>Trusses 2X3X10</td>
<td>864.00</td>
</tr>
<tr>
<td>9</td>
<td>pcs</td>
<td>Beams 2x3x10</td>
<td>342.00</td>
</tr>
<tr>
<td>18</td>
<td>pcs</td>
<td>Roof Support 2x2x10</td>
<td>576.00</td>
</tr>
<tr>
<td>24</td>
<td>sheet</td>
<td>Cor. Sheets 30x12ft</td>
<td>5,256.00</td>
</tr>
<tr>
<td>13</td>
<td>sheet</td>
<td>Plywood 3/16</td>
<td>2,808.00</td>
</tr>
<tr>
<td>Qty.</td>
<td>Unit</td>
<td>Description</td>
<td>Amount (PhP)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>116</td>
<td>pcs</td>
<td>Wall Support 2x2x8</td>
<td>2,900.00</td>
</tr>
<tr>
<td>2</td>
<td>pair</td>
<td>Hinges 1/3</td>
<td>40.00</td>
</tr>
<tr>
<td>1</td>
<td>quart</td>
<td>Vulcaseal</td>
<td>290.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>14,084.00</td>
</tr>
</tbody>
</table>

Nursery:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pcs</td>
<td>Columns 4x4x10</td>
<td>504.00</td>
</tr>
<tr>
<td>6</td>
<td>pcs</td>
<td>Trusses 2X3X10</td>
<td>288.00</td>
</tr>
<tr>
<td>6</td>
<td>pcs</td>
<td>Beams 2x3x10</td>
<td>228.00</td>
</tr>
<tr>
<td>12</td>
<td>pcs</td>
<td>Roof Support 2x2x10</td>
<td>384.00</td>
</tr>
<tr>
<td>40</td>
<td>pcs</td>
<td>Wall Support 2x2x8</td>
<td>1,000.00</td>
</tr>
<tr>
<td>16</td>
<td>pcs</td>
<td>Plastic sheet 8ft</td>
<td>3,120.00</td>
</tr>
<tr>
<td>23</td>
<td>m</td>
<td>Mosquito Net</td>
<td>448.50</td>
</tr>
<tr>
<td>1</td>
<td>kg</td>
<td>Common Nails #1</td>
<td>44.00</td>
</tr>
<tr>
<td>8</td>
<td>kg</td>
<td>Common Nails #3</td>
<td>304.00</td>
</tr>
<tr>
<td>12</td>
<td>kg</td>
<td>Common Nails #4</td>
<td>432.00</td>
</tr>
<tr>
<td>6</td>
<td>kg</td>
<td>Common Nails #5</td>
<td>228.00</td>
</tr>
<tr>
<td>4</td>
<td>rolls</td>
<td>Cyclone Wire</td>
<td>1,560.00</td>
</tr>
<tr>
<td>4</td>
<td>kg</td>
<td>Umbrella Nails</td>
<td>220.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>8760.50</td>
</tr>
</tbody>
</table>

Tool Cabinet:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pcs</td>
<td>Ply board</td>
<td>2,100.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Plywood 3/16</td>
<td>2,160.00</td>
</tr>
<tr>
<td>13</td>
<td>pair</td>
<td>Hinges 1/3</td>
<td>250.00</td>
</tr>
<tr>
<td>12</td>
<td>pcs</td>
<td>Coco Lumber 2x2x12</td>
<td>468.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Coco Lumber 2x2x10</td>
<td>320.00</td>
</tr>
<tr>
<td>36</td>
<td>pcs</td>
<td>Coco Lumber 2x2x6</td>
<td>900.00</td>
</tr>
<tr>
<td>1</td>
<td>unit</td>
<td>Transportation</td>
<td>1,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>7,198.00</td>
</tr>
</tbody>
</table>

Community Tools:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pcs</td>
<td>Hammer</td>
<td>472.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>Saw</td>
<td>600.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>Bolo/sundang</td>
<td>600.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Hole Digger</td>
<td>715.00</td>
</tr>
<tr>
<td>3</td>
<td>pcs</td>
<td>Wheelbarrow</td>
<td>7,500.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>Knapsack Sprayer</td>
<td>4,554.00</td>
</tr>
</tbody>
</table>
Family tools:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pcs</td>
<td>Hand Shovel</td>
<td>600.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Hand Cultivator</td>
<td>620.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Hand Hoe</td>
<td>600.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Bolo (purok)</td>
<td>1,000.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Sprinkler</td>
<td>2,100.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Tie Wire</td>
<td>500.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Hand Gloves</td>
<td>350.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Rake</td>
<td>2,000.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Rain Boots</td>
<td>2,200.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Raincoats</td>
<td>2,500.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Pick mattock</td>
<td>1,700.00</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>Big Basket</td>
<td>600.00</td>
</tr>
<tr>
<td>10</td>
<td>kg</td>
<td>Tie Wire</td>
<td>600.00</td>
</tr>
</tbody>
</table>

Subtotal: **19,570.00**

Seeds:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>packs</td>
<td>Broccoli</td>
<td>1,500.00</td>
</tr>
<tr>
<td>5</td>
<td>can</td>
<td>Pechay</td>
<td>650.00</td>
</tr>
<tr>
<td>10</td>
<td>kilo</td>
<td>Kangkong</td>
<td>3,000.00</td>
</tr>
<tr>
<td>10</td>
<td>packs</td>
<td>Cucumber</td>
<td>400.00</td>
</tr>
<tr>
<td>20</td>
<td>packs</td>
<td>Bitter Gourd</td>
<td>800.00</td>
</tr>
<tr>
<td>10</td>
<td>can</td>
<td>Stringbeans</td>
<td>1,300.00</td>
</tr>
<tr>
<td>5</td>
<td>kg</td>
<td>Sweetcorn</td>
<td>5,000.00</td>
</tr>
<tr>
<td>10</td>
<td>packs</td>
<td>Eggplant</td>
<td>400.00</td>
</tr>
<tr>
<td>5</td>
<td>packs</td>
<td>Sweet Pepper</td>
<td>200.00</td>
</tr>
<tr>
<td>5</td>
<td>packs</td>
<td>Tomato</td>
<td>200.00</td>
</tr>
<tr>
<td>20</td>
<td>packs</td>
<td>Bottle Gourd</td>
<td>800.00</td>
</tr>
<tr>
<td>Qty.</td>
<td>Unit</td>
<td>Description</td>
<td>Amount (PhP)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3</td>
<td>can</td>
<td>Okra</td>
<td>390.00</td>
</tr>
<tr>
<td>10</td>
<td>packs</td>
<td>Lettuce</td>
<td>400.00</td>
</tr>
<tr>
<td>30</td>
<td>kg</td>
<td>Green onion</td>
<td>900.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>15,940.00</td>
</tr>
</tbody>
</table>

Pesticides:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>liter</td>
<td>Karate</td>
<td>2,625.00</td>
</tr>
<tr>
<td>3</td>
<td>liter</td>
<td>Selectron</td>
<td>3,000.00</td>
</tr>
<tr>
<td>2</td>
<td>kg</td>
<td>Daconil</td>
<td>1,900.00</td>
</tr>
<tr>
<td>8</td>
<td>sachet</td>
<td>Trigard (50 grams)</td>
<td>3,200.00</td>
</tr>
<tr>
<td>1</td>
<td>liters</td>
<td>Tamaron</td>
<td>1,200.00</td>
</tr>
<tr>
<td>2</td>
<td>liter</td>
<td>Hoestick</td>
<td>680.00</td>
</tr>
<tr>
<td>3</td>
<td>pcs</td>
<td>Fruit fly Pheromone</td>
<td>1,020.00</td>
</tr>
<tr>
<td>2</td>
<td>liters</td>
<td>Herbicide</td>
<td>780.00</td>
</tr>
<tr>
<td>3</td>
<td>liters</td>
<td>Sumeceden</td>
<td>1,290.00</td>
</tr>
<tr>
<td>2</td>
<td>liters</td>
<td>Perfection</td>
<td>1,700.00</td>
</tr>
<tr>
<td>2</td>
<td>liters</td>
<td>Siga</td>
<td>720.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>18,115.00</td>
</tr>
</tbody>
</table>

Fertilizers:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>sacks</td>
<td>Chicken Dung</td>
<td>9,600.00</td>
</tr>
<tr>
<td>4</td>
<td>sacks</td>
<td>Complete (14-14-14)</td>
<td>2,920.00</td>
</tr>
<tr>
<td>4</td>
<td>sacks</td>
<td>DAP (18-46-0)</td>
<td>5,040.00</td>
</tr>
<tr>
<td>4</td>
<td>sacks</td>
<td>Urea (46-0-0)</td>
<td>3,400.00</td>
</tr>
<tr>
<td>3</td>
<td>sacks</td>
<td>MOP (0-0-60)</td>
<td>1,710.00</td>
</tr>
<tr>
<td>2</td>
<td>sacks</td>
<td>Kieserite</td>
<td>800.00</td>
</tr>
<tr>
<td>4</td>
<td>kg</td>
<td>Solubor</td>
<td>400.00</td>
</tr>
<tr>
<td>4</td>
<td>kg</td>
<td>Zinc Sulfate</td>
<td>160.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>24,030.00</td>
</tr>
</tbody>
</table>

Irrigation materials:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unit</td>
<td>Water pump</td>
<td>15,000.00</td>
</tr>
</tbody>
</table>

Barrel Drip Irrigation

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>sets</td>
<td>Familia Drip Irrigation</td>
<td>60,000.00</td>
</tr>
<tr>
<td>20</td>
<td>pcs</td>
<td>Barrels</td>
<td>16,000.00</td>
</tr>
</tbody>
</table>

Barrel Stand

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>kg</td>
<td>cw nail #2</td>
<td>320.00</td>
</tr>
<tr>
<td>13</td>
<td>kg</td>
<td>cw nail #3</td>
<td>494.00</td>
</tr>
</tbody>
</table>
Pipes for interconnecting irrigation system

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>pcs</td>
<td>PVC Blue FM1</td>
<td>336.00</td>
</tr>
<tr>
<td>15</td>
<td>pcs</td>
<td>Elbow</td>
<td>225.00</td>
</tr>
<tr>
<td>18</td>
<td>pcs</td>
<td>PVC Tee</td>
<td>297.00</td>
</tr>
<tr>
<td>3</td>
<td>rolls</td>
<td>HDPE Pipe</td>
<td>9,000.00</td>
</tr>
<tr>
<td>9</td>
<td>pcs</td>
<td>Ball Valve</td>
<td>1,800.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>GI Bushing</td>
<td>160.00</td>
</tr>
<tr>
<td>20</td>
<td>pcs</td>
<td>PVC BLUE ma</td>
<td>280.00</td>
</tr>
<tr>
<td>2</td>
<td>can</td>
<td>Pipe Bond 400cc</td>
<td>240.00</td>
</tr>
<tr>
<td>7</td>
<td>meter</td>
<td>Chem. Hose</td>
<td>490.00</td>
</tr>
<tr>
<td>25</td>
<td>pcs</td>
<td>GI Hose Clamp</td>
<td>200.00</td>
</tr>
<tr>
<td>1</td>
<td>quart</td>
<td>Vulca seal</td>
<td>290.00</td>
</tr>
</tbody>
</table>

Subtotal
106,094.00

Others:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Unit</th>
<th>Description</th>
<th>Amount (PhP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>pcs</td>
<td>Multiseed tray (104 holes)</td>
<td>7,800.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>billboard</td>
<td>3,000.00</td>
</tr>
<tr>
<td>40</td>
<td>l</td>
<td>fuel</td>
<td>1,800.00</td>
</tr>
</tbody>
</table>

Subtotal
12,600.00
8.2. Budget for Establishing one Ecosan UDD Toilet

The costs for establishing an ecosan urine-diversion dehydration toilet may range from 12,000 PhP up to 25,000 PhP. This is dependent on the type and size of the toilet (double chamber or single chamber; community-based or household-based) as well on the materials used. Below is a cost estimate for one community-based UDD toilet with double chamber as established in the allotment gardens of Cagayan de Oro:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Unit</th>
<th>Item</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unit</td>
<td>Ecosan bowl (incl. freight costs)</td>
<td>1,500.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Urinal (reused empty water gallon)</td>
<td>150.00</td>
</tr>
<tr>
<td>1</td>
<td>load</td>
<td>Sand (1 m³)</td>
<td>770.00</td>
</tr>
<tr>
<td>1</td>
<td>load</td>
<td>Gravel (¾ ordinary)</td>
<td>1,100.00</td>
</tr>
<tr>
<td>20</td>
<td>bags</td>
<td>Portland Cement</td>
<td>3,564.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coco lumber (assorted)</td>
<td>3142.70</td>
</tr>
<tr>
<td>160</td>
<td>pcs</td>
<td>Concrete Hallow Blocks – 4”x8”x16”</td>
<td>880.00</td>
</tr>
<tr>
<td>5</td>
<td>Length</td>
<td>Deformed bars – 8 mm Ø x 6 m</td>
<td>176.00</td>
</tr>
<tr>
<td>16</td>
<td>Length</td>
<td>Deformed bars – 10 mm Ø x 6 m</td>
<td>1,953.60</td>
</tr>
<tr>
<td>2</td>
<td>Kg.</td>
<td>G.I. tie wire - #16</td>
<td>105.60</td>
</tr>
<tr>
<td>3</td>
<td>pcs.</td>
<td>¼” x 4’ x 8’ – Marine plywood</td>
<td>950.40</td>
</tr>
<tr>
<td>3</td>
<td>pcs.</td>
<td>3/16” x 4’ x 8’ – Hardiflex board</td>
<td>1,056.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>Plain G.I. Sheet – gauge #26 (3’ x 8’)</td>
<td>473.00</td>
</tr>
<tr>
<td>8</td>
<td>pcs</td>
<td>2” x 3” – Hinge</td>
<td>80.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>3” x 3” – Hinge</td>
<td>50.00</td>
</tr>
<tr>
<td>7</td>
<td>pcs</td>
<td>Door pull - #5</td>
<td>126.00</td>
</tr>
<tr>
<td>1</td>
<td>kg</td>
<td>#1 – Common wire nails</td>
<td>50.60</td>
</tr>
<tr>
<td>1</td>
<td>kg</td>
<td>#1-1/2 – Common wire nails</td>
<td>48.40</td>
</tr>
<tr>
<td>0.5</td>
<td>kg</td>
<td>#2-1/2 – Common wire nails</td>
<td>23.10</td>
</tr>
<tr>
<td>3</td>
<td>kg</td>
<td>#3 – Common wire nails</td>
<td>132.00</td>
</tr>
<tr>
<td>1</td>
<td>kg</td>
<td>#4 - Common Wire Nails</td>
<td>34.00</td>
</tr>
<tr>
<td>0.5</td>
<td>kg</td>
<td>Flathead nails</td>
<td>30.00</td>
</tr>
<tr>
<td>3</td>
<td>pcs</td>
<td>1”Ø x 10’ – PVC pipe blue</td>
<td>455.40</td>
</tr>
<tr>
<td>10</td>
<td>pcs</td>
<td>1”Ø – PVC blue – elbow 90°</td>
<td>209.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>1”Ø – PVC pipe – tee</td>
<td>83.60</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>4”Ø x 10’ – PVC pipe (orange)</td>
<td>297.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>4”Ø – PVC pipe – Tee (orange)</td>
<td>74.80</td>
</tr>
<tr>
<td>120</td>
<td>pcs</td>
<td>Nipa shingles</td>
<td>420.00</td>
</tr>
<tr>
<td>Qty</td>
<td>Unit</td>
<td>Item</td>
<td>Total</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>0.5</td>
<td>bundle</td>
<td>Rattan Strip</td>
<td>24.75</td>
</tr>
<tr>
<td>4</td>
<td>sheets</td>
<td>Bamboo Mat (Amakan)</td>
<td>484.00</td>
</tr>
<tr>
<td>100</td>
<td>pcs</td>
<td>Tiles (8 x 8)</td>
<td>1,210.00</td>
</tr>
<tr>
<td>1</td>
<td>Can</td>
<td>Solvent cement – 400 grams</td>
<td>66.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Kitchen Sink – small</td>
<td>649.00</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>Water jug - 20 (transparent) for urine</td>
<td>440.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Soap case</td>
<td>22.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Plastic waste can (oval-small)</td>
<td>55.00</td>
</tr>
<tr>
<td>2</td>
<td>pc</td>
<td>Container (for sawdust and tissue)</td>
<td>220.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Container (for water)</td>
<td>110.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Water ladle</td>
<td>16.50</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Cup (for ash)</td>
<td>22.00</td>
</tr>
<tr>
<td>1</td>
<td>quart</td>
<td>Black paint</td>
<td>104.50</td>
</tr>
<tr>
<td>1</td>
<td>quart</td>
<td>Red lead paint</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>bottle</td>
<td>Paint thinner</td>
<td>27.50</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Safety hasp – #4</td>
<td>13.20</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Padlock – medium</td>
<td>62.70</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Barrel Bolt #3</td>
<td>13.20</td>
</tr>
<tr>
<td>1</td>
<td>gallon</td>
<td>Clear gloss varnish</td>
<td>418.00</td>
</tr>
<tr>
<td>1</td>
<td>bottle</td>
<td>Lacquer thinner</td>
<td>343.20</td>
</tr>
<tr>
<td>2</td>
<td>pcs</td>
<td>Paint brush – 2”</td>
<td>44.00</td>
</tr>
<tr>
<td>2</td>
<td>bundles</td>
<td>Bamboo</td>
<td>132.00</td>
</tr>
<tr>
<td>1</td>
<td>pack</td>
<td>Gloves</td>
<td>120.00</td>
</tr>
<tr>
<td>1</td>
<td>pack</td>
<td>Facial mask</td>
<td>110.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Shovel</td>
<td>220.00</td>
</tr>
<tr>
<td>0.5</td>
<td>kg</td>
<td>White cement</td>
<td>16.50</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Floor mop</td>
<td>275.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Toilet seat</td>
<td>260.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Plaque</td>
<td>500.00</td>
</tr>
<tr>
<td>1</td>
<td>pc</td>
<td>Info poster (Do’s and Don’ts)</td>
<td>450.00</td>
</tr>
<tr>
<td>1</td>
<td>pack</td>
<td>Toilet paper</td>
<td>200.00</td>
</tr>
</tbody>
</table>

Subtotal 24,685.25
9. References

9.1. Books and Articles in Journals

- AVRDC. 1990. Vegetable production manual. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan R.O.C.

9.2. Internet Resources

Vegetable Production Guidelines for the Tropics & Subtropics:
- The World Vegetable Center (AVRDC):
 http://www.avrdc.org/LC/home.html
Companion planting for vegetables and herbs:
- Tinker’s Garden: http://www.tinkersgardens.com/vegetables

Allotment Gardening Websites:
- Allotment Gardens of Cagayan de Oro: http://puvep.xu.edu.ph/ag/ag.htm
- The Office International du Coin de Terre et des Jardins Familiaux: http://www.jardins-familiaux.org/

Urban Agriculture Websites:
- City Farmer’s Urban Agriculture Notes: http://www.cityfarmer.org/
- Resource Centres on Urban Agriculture and Food Security: www.ruaf.org

Ecological Sanitation Websites:
- Philippine Ecosan Network: http://www.ecosan.ph/
- UNDP Ecosan Website: http://www.undp.org/water/ecol.html
- GTZ (Germany): http://www2.gtz.de/ecosan/english/
- SIDA (Sweden): http://www.ecosanres.org/
- SANDEC (Switzerland): http://www.sandec.ch
- Ecosan Service Foundation: http://www.ecosanservices.org/

Herbs Websites:
- HerbNet: http://www.herbnnet.com/

Seeds and Agricultural Inputs Philippines:
- East West Seed Corporation: http://www.eastwestseed.com/
- Ramgo Seeds International: http://www.ramgoseeds.com/
- Acosta Foundation Inc.: email: afi_ilocos@yahoo.com

Drip Irrigation:
- Netafim Drip Irrigation: http://www.netafim.com/
- Plastro Irrigation systems: http://www.plastro.com/
PUVeP staff (From the left: Stephen O. Lee, Elmer G. Elorde Jr., Arnel A. Aquino; Jeannette Trambel (guest researcher from Canada), Robert J. Holmer, Ricarda “Lola Edang” Salmasan, Angelito A. Montes, Janice A. Caseria, Clarito “Turok” A. Santos, Glenda Y. Sol, Rafael A. Odarit