Installation procedure

- assembly of reactor container (sheet metal tank with conical bottom) according to treatment volume (1 L reactor per 10 L of urine per day)
- construction of stirring mechanism & stand (welded metal bars and sheet); assure flow from storage to reactor to disposal.
- installation of fittings & filter (polypropylene fittings and nylon filter bag). Filter fabric: nylon fabric as used for shirts sewn to bag of 0.4 m² surface for 100 L reactor.
- set-up of reactor and storage tanks (plastic storage tanks with connections to reactor)

Dimensioning

- daily treatment capacity: 10 L urine / 1 L reactor
- 500 L urine yield approximately 1 kg struvite

Installation costs

labour costs: 1 operator for a 500 L reactor

Reactor set-up [NRs]	50 L	500 L
steel tank for reactor	3'500	15'000
stirring system & stand	2'000	10'000
urine storage tank	500	8'000
pipes & fittings	500	2'000
effluent storage tank	500	8'000
total [NRs]	7'000	43'000

Further considerations

- · small scale business approach
- · commercialization of struvite as a fertilizer
- · phosphorous prices are likely to increase further
- · transportation of bittern from India to Nepal

Further readings

• Etter, B. (2009): Struvite recovery from urine at community scale in Nepal – Project intermediate report. EPFL: Swiss Federal Institute of Technology, Lausanne, Switzerland

• Etter, B. (2009): Process optimization of low-cost struvite recovery – MSc thesis. EPFL: Swiss Federal Institute of Technology, Lausanne, Switzerland

 Gantenbein, B., Khadka, R. (2009): Struvite recovery from urine at community scale in Nepal – Final project report phase I. Eawag: Swiss Federal Institute of Aquatic Science and Technology. Zurich, Switzerland

• Tilley, E., Gantenbein, B., Khadka, R., Zurbrügg, C., Udert, K.M. (2009): Social and economic feasibility of struvite recovery from urine at the community level in Nepal. In: International Conference on Nutrient Recovery from Wastewater Streams. K. Ashley, D. Mavinic and F. Koch (eds). IWA Publishing, London, pp 169-178.

> Download the publications from www.sandec.ch

Internet resources

- www.novaquatis.ch
- www.sandec.ch
- www.ceep-phosphates.org

Contact information

struvite.nepal@eawag.ch

Eawag

Swiss Federal Institute of Aquatic Science and Technology Department for Water and Sanitation in Developing Countries Überlandstrasse 133 8600 Dübendorf Switzerland Phone +41 44 823 55 11 Fax +41 44 823 50 28 www.eawag.ch www.sandec.ch

UN-Habitat Nepal

The United Nations Human Settlement Programme Water for Asian Cities Programme Nepal Pulchowk Kathmandu Nepal Phone +977 1 55 42 816 Fax +977 1 55 39 877 www.unhabitat.org www.unwac.org wac.nepal@unhabitat.org.np

How to produce fertilizer from urine: Struvite

Urine contains valuable nutrients; it is an excellent fertilizer if applied to crops.

Struvite is a powder fertilizer produced from urine.

If **urine** cannot be applied directly because:

- storage space is not available
- transport is difficult
- · its odour is unpleasant

You can produce **struvite** to benefit from the fertilizing properties of urine, because:

- volume and weight are reduced
- nutrients can be stored over time
- · handling is more user-friendly in powder form

How does the STUN reactor work?

STUN: Struvite recovery from urine in Nepal **The Struvite Harvesting Reactor**

How is struvite formed?

Urine contains phosphate (PO₄) and ammonium (NH₄); both are important nutrients. If magnesium (Mg) is added to urine, these substances will bind and form struvite (MgNH₄PO₄·6H₂O) powder, which can be filtered out.

Process outputs

struvite in practice - a valuable fertilizer

- slow-release continuous nutrient flow
- bio-available easy uptake by plants
- free of heavy metals and pharmaceuticals

effluent reuse potential

effluent characteristics - additional nutrients

- high nitrogen (N) content
- high potassium (K) content

reuse potential - fertigation

- fertigation: fertilization by irrigation
- no clogging in drip irrigation