
 
 
 
 
 

EFFECTIVENESS OF CERAMIC FILTRATION FOR DRINKING WATER 
TREATMENT IN CAMBODIA 

 
 
 
 
 

Joseph Mark Brown 
 
 
 
 
 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Environmental Sciences and Engineering. 
 
 
 
 
 

Chapel Hill 
2007 

 
 
 
 
 

Approved byyyyyy                              
 

Mark D. Sobsey, Ph.D. 
 

Michael D. Aitken, Ph.D. 
 

Francis A. DiGiano, Ph.D. 
 

Dana Loomis, Ph. D. 
 

David Weber, M.D. 

 



 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2007 

Joseph Mark Brown 

ALL RIGHTS RESERVED 

 
 
 
 
 
 
 



 iii

 
 
 
 
 

ABSTRACT 
 

JOSEPH MARK BROWN: EFFECTIVENESS OF CERAMIC FILTRATION FOR 
DRINKING WATER TREATMENT IN CAMBODIA 

 (Under the direction of Mark D. Sobsey, Ph.D.) 
 
 

For the estimated 66% of Cambodians without access to improved drinking water 

sources and the potentially much greater percentage without consistent access to 

microbiologically safe water, point-of-use water treatment coupled with appropriate 

storage to prevent recontamination is a promising option for securing access to safe 

drinking water.  The ceramic water purifier (CWP) is an emerging point-of-use water 

treatment technology that is made locally in Cambodia and in several other developing 

countries based on a design originally developed in Latin America in the 1980s.  Despite 

the filter's increasingly widespread promotion and implementation as a public health 

intervention within Cambodia and worldwide, its effectiveness in reducing waterborne 

microbes and diarrheal disease in users has not been adequately characterized.   This 

dissertation examines: (i) the microbiological effectiveness of locally produced ceramic 

filters in Cambodia against bacterial and viral surrogates in the laboratory and in field 

use; (ii) the health impacts of the CWP and a modified CWP in a randomized, controlled 

trial in a rural/peri-urban village; and (iii) the continued use, microbiological 

effectiveness, and sustained health impacts of the CWP after up to 44 months in 

household use in three provinces of Cambodia.   



 iv

Results indicate filters as currently produced do reduce microbial indicators in 

drinking water and contribute to the reduction of diarrheal disease in users.   Key findings  

were:  (i) CWPs reduced E. coli up to 99.9999%, with mean reductions of approximately 

99% in both laboratory and field testing; (ii) CWPs reduced MS2, a viral surrogate, by a 

mean 90-99% in laboratory testing; (iii) use of the CWP reduced diarrheal disease 

outcomes by approximately 40% in users versus non-users, after controlling for 

clustering within households and within individuals over time in a randomized, controlled 

trial; (iv) filters maintained effectiveness over long periods, up to 44 months in field use; 

(v) declining use of the CWPs after implementation was observed due to breakages of the 

ceramic filter elements coupled with limited availability of replacement parts in 

communities; and (vi) CWPs in field use were susceptible to recontamination through 

improper handling practices.   

 

 

 

 

 

 

 

 

 

 

 



 v

 
 
 
 
 

I am forever indebted to my longsuffering bride, my wise and patient mentors, my 
generous benefactors and enablers, my steadfast friends and family, and my loyal dogs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 
 
 
 
 

TABLE OF CONTENTS 
   
LIST OF TABLES………………………………………………………………... 
 

ix

LIST OF FIGURES………………………………………………………………. 
 

xii

LIST OF ABBREVIATIONS……………………………………………………..  
 

xvi

CHAPTER 1:  INTRODUCTION AND OBJECTIVES…………………………. 
 

1

     1.1  Introduction……………………………………………………………….. 
 

1

     1.2  Objectives…………………………………………………………………. 
 

3

     1.3  References………………………………………………………………… 
 

9

CHAPTER 2:  LITERATURE REVIEW………………………………………… 
 

10

     2.1  Introduction………………………………………………………………..  
 

10

     2.2  Summits, targets, and initiatives………………………………………….. 
 

11

     2.3  Waterborne disease……………………………………………………….. 
 

13

     2.4  Access to safe water………………………………………………………. 
 

19

     2.5  Point-of-use water treatment interventions………………………………..   
 

20

     2.6  Ceramic filters for drinking water treatment……………………………… 
 

33

     2.7  References………………………………………………………………… 
 

41

CHAPTER 3:  LABORATORY AND FIELD EFFECTIVENESS 
OF LOW-COST CERAMIC FILTERS FOR DRINKING WATER 
TREATMENT IN CAMBODIA…………………………………………………. 
 

51

     3.1  Introduction……………………………………………………………….. 
 

52

     3.2  Purpose and objectives……………………………………………………. 
 

55

     3.3  Methods and materials……………………………………………………. 56



 vii

 
     3.4  Results…………………………………………………………………….. 
 

70

     3.5  Discussion………………………………………………………………… 
 

78

     3.6  Conclusions………………………………………………………………. 
 

84

     3.7  References………………………………………………………………… 
 

106

CHAPTER 4:  POINT-OF-USE DRINKING WATER  
TREATMENT IN CAMBODIA: A RANDOMIZED,  
CONTROLLED TRIAL OF LOCALLY MADE  
CERAMIC FILTERS……………………………………………………………... 
 

110

     4.1  Introduction……………………………………………………………….. 
 

111

     4.2  Purpose and objectives……………………………………………………. 
 

115

     4.3  Methods and materials……………………………………………………. 
 

116

     4.4  Results…………………………………………………………………….. 
 

128

     4.5  Discussion………………………………………………………………… 
 

138

     4.6  Conclusions………………………………………………………………..  
 

147

     4.7  References………………………………………………………………… 
 

164

CHAPTER 5:  CERAMIC FILTERS FOR POINT-OF-USE  
DRINKING WATER TREATMENT IN RURAL  
CAMBODIA: INDEPENDENT APPRAISAL OF  
INTERVENTIONS FROM 2002-2005…………………………………………... 
 

169

     5.1  Introduction……………………………………………………………….. 
 

170

     5.2  Purpose and objectives……………………………………………………. 
 

173

     5.3  Methods and materials……………………………………………………. 
 

174

     5.4 Results……………………………………………………………………... 
 

192

     5.5  Discussion………………………………………………………………… 
 

208

     5.6  Conclusions……………………………………………………………….. 
 

219

     5.7  References………………………………………………………………… 243



 viii

CHAPTER 6:  SUMMARY, CONCLUSIONS, AND FUTURE  
WORK……………………………………………………………………………. 
 

247

     6.1 Summary…………………………………………………………………... 
 

247

     6.2  Conclusions……………………………………………………………….. 
 

248

     6.3  Research needs and remaining questions…………………………………. 
 

251

     6.4  References………………………………………………………………… 
 

256

 



 ix

LIST OF TABLES 
 

Table 2.1.  Classification of infectious diseases related to water  
and sanitation………………………………………………………………….…….. 
 

15

Table 2.2.  Results of meta-analysis of effects of water-related  
interventions on diarrhea from Fewtrell et al.  (2005)………………………….…... 
 

23

Table 2.3.  Estimates of baseline and maximum effectiveness of  
filter technologies against microbes in water, including porous  
ceramic filtration and other proposed POU filtration technologies…………….…… 
 

32

Table 3.1.  Lab-based effectiveness testing for low-cost ceramic  
pot-style filters: summary of evidence to date………………………………….…... 
 

54

Table 3.2.  Laboratory challenge water characteristics……………………….…….. 
 

60

Table 3.3.  Summary of laboratory effectiveness data for the  
CWP1, CWP2, and CWP3 ceramic filters…………………………………….……. 
 

86

Table 3.4.  Field effectiveness data summary for water treatment 
by boiling, the CWP1, and the CWP2 over the 18 week trial………………….…… 
 

87

Table 4.1.  Characteristics of study groups………………………………….……… 
 

148

Table 4.2.  Summary of longitudinal data for diarrheal disease  
(all) by biweekly surveillance point………………………………………….……... 
 

149

Table 4.3.  Summary of longitudinal data for dysentery  
(diarrheal disease with blood) by biweekly surveillance point……………….…….. 
 

150

Table 4.4.  Diarrheal disease prevalence proportions and filter  
effect estimates (CWP1) by age and sex of individuals……………………….……. 
 

151

Table 4.5.  Diarrheal disease prevalence proportions and filter  
effect estimates (CWP2) by age and sex of individuals……………………….……. 
 

152

Table 4.6.  Dysentery (diarrhea with blood) prevalence proportions  
and filter effect estimates (CWP1) by age and sex of individuals………….………. 
 

153

Table 4.7.  Dysentery (diarrhea with blood) prevalence proportions  
and filter effect estimates (CWP2) by age and sex of individuals…………….……. 
 

154

Table 4.8.  Measured levels of E. coli (cfu/100 ml) in household  
drinking water by study group……………………………………………….……… 
 

155



 x

Table 4.9.  Mean E. coli counts (cfu/100 ml) and turbidity  
averages for samples taken in intervention households  
(untreated and treated water)………………………………………………….…….. 
 

156

Table 4.10.  Stratum-specific risk estimates for levels of  
E. coli in household drinking water samples, diarrheal disease  
in last 7 days…………………………………………………………………….…... 
 

157

Table 4.11.  Stratum-specific risk estimates for levels of  
E. coli in household drinking water samples, diarrheal  
disease with blood (dysentery) in last 7 days………………………………….……. 
 

158

Table 5.1.  Data summary and estimated odds ratios for  
selected factors.  Odds ratios are adjusted for time  
elapsed since implementation………………………………………………….……. 
 

221

Table 5.2.  Observed levels of E. coli (cfu/100 ml) in  
household drinking water by study group……………………………………….….. 
 

222

Table 5.3.  Arithmetic mean total coliform and E. coli  
counts (cfu/100 ml) and turbidity for samples taken in  
intervention households (untreated and treated water)………………………….…... 
 

223

Table 5.4.  Geometric mean total coliform and E. coli  
counts (cfu/100 ml) and turbidity for samples taken in  
intervention households (untreated and treated water)……………………………....  
 

224

Table 5.5.  Summary of log10 reduction values of E. coli by  
CWPs, by province………………………………………………………………….. 
 

225

Table 5.6.  Summary of log10 reduction values of E. coli by  
the CWP, stratified by time in use…………………………………………………...   
 

226

Table 5.7.  Summary of E. coli counts (cfu/100 ml) in filter  
treated water, by time in use……………………………………………………….... 
   

227

Table 5.8.  Summary of distribution of log10 reduction values 
of E. coli by CWPs compared with boiled, stored water……………………………. 
 

228

Table 5.9.  Selected characteristics of the intervention  
(households with CWPs) and control (without CWPs)  
groups from the longitudinal study of water quality and  
health………………………………………………………………………………… 
 

229

Table 5.10.  Summary of longitudinal data for diarrheal  
disease by surveillance point………………………………………………………... 230



 xi

Table 5.11.  Diarrheal disease prevalence and filter effect  
estimates by age and sex of individuals and province………………………………. 
 

231

Table 5.12.  Stratum-specific outcome estimates for levels  
of E. coli in household drinking water samples……………………………………... 
 

232



 xii

LIST OF FIGURES 
 
Figure 2.1.  The ceramic water purifier (CWP) and porous  
ceramic pots stacked for drying, as manufactured by  
Resource Development International, Kandal Province,  
Cambodia……………………………………………………………………………. 
 

37

Figure 3.1.  Box-and-whisker plot for log10 reduction of  
E. coli CN13 by filter type (CWP1, CWP2, CWP3) and  
challenge water (A, B)………………………………………………………………. 
 

88

Figure 3.2.  Box-and-whisker plot for log10 reduction of  
MS2 by filter type (CWP1, CWP2, CWP3) and challenge  
water (A,B)………………………………………………………………………...... 
 

89

Figure 3.3.  Log10 concentrations of E. coli CN13 in CWP1  
against spiked rain water (challenge water A) over 680 l  
(n = 34 sampling events) in both influent and effluent……………………………... 
 

90

Figure 3.4.  Log10 concentrations of E. coli CN13 in 
CWP1 against spiked surface water (challenge water B)  
over 680 l (n = 34 sampling events) in both influent and  
effluent……………………………………………………………………………….  
 

90

Figure 3.5.  Log10 concentrations of E. coli CN13 in  
CWP2 against spiked rain water (challenge water A)  
over 680 l (n = 34 sampling events) in both influent and  
effluent………………………………………………………………………………. 
 

91

Figure 3.6.  Log10 concentrations of E. coli CN13 in  
CWP2 against spiked surface water (challenge water B)  
over 680 l (n = 34 sampling events) in both influent and  
effluent……………………………………………………………………………….  
 

91

Figure 3.7.  Log10 concentrations of E. coli CN13 in  
CWP3 (two units run in parallel) against spiked rain  
water (challenge water A) over 680 l each (total  
volume 1360 l) (n = 34 sampling events per unit) in  
both influent and effluent……………………………………………………………  
 

92

Figure 3.8.  Log10 concentrations of E. coli CN13 in  
CWP3 (two units run in parallel) against spiked surface  
water (challenge water B) over 680 l each (total volume  
1360 l) (n = 34 sampling events per unit) in both influent  
and effluent………………………………………………………………………….. 
 

92



 xiii

Figure 3.9.  Log10 concentrations of MS2 in CWP1  
against spiked rain water (challenge water A) over  
660 l (n = 16 sampling events) in both influent and  
effluent………………………………………………………………………………. 
 

93

Figure 3.10.  Log10 concentrations of MS2 in CWP1  
against spiked surface water (challenge water B)  
over 660 l (n = 16 sampling events) in both influent  
and 
effluent…………………………………………………………………………......... 
 

93

Figure 3.11.  Log10 concentrations of MS2 in CWP2  
against spiked rain water (challenge water A) over  
660 l (n = 17 sampling events) in both influent and  
effluent………………………………………………………………………………. 
   

94

Figure 3.12.  Log10 concentrations of MS2 in CWP2 against  
spiked surface water (challenge water B) over 660 l (n = 17  
sampling events) in both influent and effluent………………………………………  
 

94

Figure 3.13.  Log10 concentrations of MS2 in CWP3 (two  
units run in parallel) against spiked rain water (challenge  
water A) over 660 l each (total volume 1320 l) (n = 17  
sampling events per unit) in both influent and effluent……………………………...  
 

95

Figure 3.14.  Log10 concentrations of MS2 in CWP3 (two 
units run in parallel) against spiked surface water (challenge  
water B) over 660 l each (total volume 1320 l) (n = 17  
sampling events per unit) in both influent and effluent……………………………...  
 

95

Figure 3.15.  Box and whisker plot of E. coli counts per 100  
ml sample in water treated by boiling, the CWP1, and the  
CWP2………………………………………………………………………………... 
 

96

Figure 3.16.  Box and whisker plot of E. coli log10 reduction 
sample in water treated by boiling, the CWP1, and the CWP2……………………... 
 

97

Figure 3.17.  Histogram showing the distribution of log10  
reduction of E. coli in CWP1 filters in field use over the 18  
week field trial period……………………………………………………………….. 
 

98

Figure 3.18.  Histogram showing the distribution of log10  
reduction of E. coli in CWP2 filters in field use over the 18  
week field trial period……………………………………………………………….. 
 
 

99



 xiv

Figure 3.19.  Histogram showing the distribution of log10  
reduction of E. coli by boiling over the 18 week field trial period………………….. 
 

100

Figure 3.20.  Histogram showing the distribution of E. coli  
per 100 ml sample in household drinking water treated by the  
CWP1………………………………………………………………………………... 
 

101

Figure 3.21.  Histogram showing the distribution of E. coli per  
100 ml sample in household drinking water treated by the CWP2…………………. 
 

102

Figure 3.22.  Histogram showing the distribution of E. coli per  
100 ml sample in household drinking water treated by boiling…………………….. 
 

103

Figure 3.23.  Field performance of the CWP1 filter over nine  
biweekly sampling points, assuming that 20 l per day per  
household (the mean reported by households) were treated………………………… 
 

104

Figure 3.24.  Field performance of the CWP2 filter over nine  
biweekly sampling points, assuming that 20 l per day per  
household (the mean reported by households) were treated………………………… 
 

105

Figure 4.1.  Rainfall (mm) per month in 2006, from weather  
station at Resource Development International (RDI), located  
approximately 10km from Prek Thmey village……………………………………... 
 

159

Figure 4.2.  Association of measured covariates with diarrheal  
disease in all individuals, adjusted for presence of the  
intervention (CWP1 or CWP2) and for clustering within  
households and in individuals over time……………………………………………. 
 

160

Figure 4.3.  Association of measured covariates with dysentery  
in all individuals, adjusted for presence of the intervention  
(CWP1 or CWP2) and for clustering within households and  
in individuals over time……………………………………………………………... 
 

161

Figure 4.4.  Association of measured covariates with  
diarrheal disease in children under five years of age, adjusted  
for presence of the intervention (CWP1 or CWP2) and for  
clustering within households and in individuals over time…………………………. 
 

162

Figure 4.5.  Association of measured covariates with  
dysentery in children under the age of five, adjusted for  
presence of the intervention (CWP1 or CWP2) and for  
clustering within households and in individuals over time…………………………. 
 
 

163



 xv

Figure 5.1.  Map showing locations of provinces and areas  
included in the study (red squares) in Cambodia.  Study  
households were taken from 13 rural villages in the provinces  
of Kandal, Kampong Chhnang, and Pursat…………………………………………. 
 

233

Figure 5.2.  Percentage of filters remaining in household use  
as a function of time, with time as a categorical variable  
(6 month increments)………………………………………………………………... 
 

234

Figure 5.3.  Reasons given by respondents for filter disuse at  
the time of follow up………………………………………………………………... 
 

235

Figure 5.4.  Histogram showing the distribution of user- 
approximated time in use of filters not in use at the time  
of this follow up study (n=317)……………………………………………………... 
 

236

Figure 5.5.  Odds ratio (OR) point estimates (and 95%  
confidence intervals) for factors associated with continued  
use of the CWP in 506 households in Kandal, Kampong  
Chhnang, and Pursat Provinces, adjusted for time since  
Implementation……………………………………………………………………… 
 

237

Figure 5.6.  Box-and-whisker plot showing data for total  
coliform, E. coli, and turbidity (measured in NTU) in all  
filter influent and effluent samples………………………………………………….. 
 

238

Figure 5.7.  Box-and-whisker plot showing log10 reductions  
for total coliform, E. coli, and turbidity in the CWP………………………………... 
 

239

Figure 5.8.  Box-and-whisker plot for log10 reduction of  
E. coli in all treated versus untreated water samples by  
time since implementation, coded in 6-month blocks………………………………. 
 

240

Figure 5.9.  Association of measured covariates with  
diarrheal disease in all individuals, adjusted for presence  
of the intervention (CWP) and for clustering of the  
outcome within households and in individuals over time…………………………... 
 

241

Figure 5.10.  Association of measured covariates with  
diarrheal disease in children under five years of age  
(0 – 48 months at first household visit), adjusted for  
presence of the intervention (CWP) and clustering within  
households and in individuals over time……………………………………………. 242



 xvi

LIST OF ABBREVIATIONS 
 
AIDS  Acquired Immune Deficiency Syndrome 
 
BMJ  British Medical Journal 
 
BSF   BioSand Filter 
 
CDC  Centers for Disease Control (US) 
 
cfu   Colony Forming Units 
 
CI  Confidence Interval 
 
CWP  Ceramic Water Purifier 
 
CWP1  Ceramic Water Purifier as made by Resource Development International 
 
CWP2  Ceramic Water Purifier (CWP1 modified by adding FeOOH) 
 
CWP3  Ceramic Water Purifier (CWP1 without AgNO3 or other amendments) 
 
DAL  Double Agar Layer 
 
DI  Deionized 
 
EPA  Environmental Protection Agency (EPA) 
 
g  grams 
 
GEE  Generalized Estimating Equations 
 
HAV  Hepatitis A Virus 
 
HEV  Hepatitis E Virus 
 
HIP  Hygiene Improvement Project 
 
HIV  Human Immunodeficiency Virus 
 
hr  hour 
 
HWT  Household Water Treatment 
 
HWTS  Household Water Treatment and Safe Storage 
 



 xvii

ICAITI Instituto Centroamericano de Investigación y Technología Industrial 
 
IDE  International Development Enterprises 
 
IDWSD International Drinking Water and Sanitation Decade 
 
INPHWTSS International Network to Promote Household Water Treatment and Safe 

Storage 
 
IOSSF Intermittently Operated Slow Sand Filter, e.g., the BioSand Filter 
 
IRB  Institutional Review Board, University of North Carolina – Chapel Hill 
 
IRC  International Water and Sanitation Centre, (Delft, Netherlands) 
 
IRR  Incidence Rate Ratio 
 
l  liters 
 
LRV  Log10 Reduction Value 
 
m  Meters 
 
MDG  Millennium Development Goals 
 
MF  Membrane Filtration 
 
mg  milligrams 
 
mo.  Month(s) 
 
NAP  National Academies Press (United States) 
 
NGO   Non-governmental Organization 
 
NIS  National Institute of Statistics (Cambodia) 
 
NRC  National Research Council 
 
NSF  National Sanitation Foundation (now NSF-International) 
 
NTU   Nephelometric Turbidity Units 
 
ORT   Oral Rehydration Therapy 
 
PBS  Phosphate-Buffered Saline 



 xviii

PDWS  Primary Drinking Water Source 
 
PfP  Potters for Peace 
 
pfu  Plaque Forming Units 
 
pH  Pouvoir hydrogène 
 
POST   Parliamentary Office of Science and Technology (United Kingdom) 
 
POU  Point-of-Use 
 
PPR  Prevalence Proportion Ratio 
 
rcf  Relative Centrifugal Force (multiples of the force of gravity at sea level) 
 
RDI  Resource Development International 
 
RNA  Ribonucleic Acid 
 
RO  Reverse Osmosis 
 
RR  Rate Ratio 
 
SAL  Single Agar Layer 
 
SES  Socio-Economic Status 
 
SODIS  Solar Disinfection system  
 
TSA  Tryptic Soy Agar 
 
TSB  Tryptic Soy Broth 
 
UNC-CH University of North Carolina – Chapel Hill 
 
UNCED United Nations Conference on Environment and Development 
 
UN  United Nations 
 
UNICEF United Nations Children's Fund 
 
USEPA United States Environmental Protection Agency 
 
UV  Ultra-Violet 
 



 xix

WHO  World Health Organization 
 
WQHC Water Quality and Health Council (trade association, United States)  
 
WSH  Water, Sanitation, and Hygiene 
 
 
 
 



 
 
 
 
 
CHAPTER 1:  INTRODUCTION AND OBJECTIVES 
 

1.1  Introduction 

Over 1.1 billion people worldwide lack access to improved drinking water 

sources, and many more lack access to safe water as defined by the WHO risk-based 

Guidelines for Drinking Water Quality (10-6 Disability Adjusted Life Years per person 

per year) (WHO 2006; WHO 2004).  Conventional piped water systems using effective 

treatment to deliver safe water to households may be decades away in much of the 

developing world, meaning that many of the poorest people must collect water outside 

the home and are responsible for managing (e.g., treating and storing) it themselves at the 

household level (Sobsey 2002).  This gap in service is a serious public health issue and 

has been addressed in the Millennium Development Goals, which aim to halve, by 2015, 

the proportion of people without access to safe water in 2000 (UN 2000).  Unsafe 

drinking water contributes to a staggering burden of waterborne disease in developing 

countries, borne primarily by the poor.  Particularly susceptible are children, the elderly, 

and immuno-compromised individuals, who are most vulnerable to diarrheal and other 

waterborne infectious diseases.   

In response to the persistent problems associated with waterborne diseases 

worldwide, new strategies for safe water provision are gaining currency, including 

treating drinking water at the household level to reduce the ingestion of pathogenic 

microbes.  Taken together, devices that can be used to treat water and/or prevent 
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contamination of stored water in the home are referred to as household water treatment 

(HWT) or point-of-use (POU) technologies.  These comprise a range of options that can 

enable individuals and communities to reduce microbial pathogens or chemical 

contaminants in collected water at the point of use, usually at the household level.  POU 

technology has the potential to fill the service gap where piped water systems are not 

possible, potentially resulting in substantial positive health impacts in developing 

countries (Sobsey 2006).  Recent meta-analyses of field trials have suggested that 

household-based water quality interventions such as appropriate treatment and safe 

storage are effective in reducing diarrheal disease (Fewtrell et al.  2005; Clasen et al.  

2006a, 2007).   

Many technologies for POU water treatment exist and some are supported by 

extensive laboratory and field studies documenting effective reduction of waterborne 

pathogens and diarrheal disease in users.  One promising technology is porous ceramic 

filtration.  Recent studies of commercially produced ceramic filtration devices have 

suggested that they do provide an effective barrier against microbial pathogens in water 

and that interventions are associated with significant health gains in users versus non-

users of the technologies (Clasen et al.  2004a; Clasen 2004b; Clasen et al.  2005; Clasen 

et al.  2006b).  Locally produced ceramic filters, however, have not been rigorously 

evaluated in systematic field studies to determine microbiological effectiveness, impact 

on diarrheal disease, or continued effectiveness over time in field use, despite 

increasingly widespread production and distribution of these interventions throughout the 

developing world.  As is the case with all candidate POU water treatment technologies, 
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critical evaluation of the filter’s sustained impact on water quality and human health is 

needed to inform current and potential users, implementers, and decision makers.   

This dissertation includes three studies that add to the current knowledge of the 

potential role of locally produced ceramic water filters in providing access to safe 

drinking water in developing countries.  These studies assess: (i), the microbiological 

effectiveness of locally produced ceramic filters (the CWP, or ceramic water purifier, 

together with two modified versions of the CWP) in Cambodia against bacterial and viral 

surrogates in the laboratory and E. coli in field use; (ii), the health impacts of the CWP 

and a modified CWP in a randomized, controlled trial in a rural/peri-urban village; and 

(iii), the continued use and sustained impact of the CWP after up to 44 months in 

household use in three provinces of Cambodia.    These studies and their rationales are 

articulated below as research objectives.      

 

1.2  Objectives 

1.2.1  Objective 1   

The first objective of this research was to evaluate the microbiological 

effectiveness of locally manufactured ceramic water filters against bacterial and viral 

pathogen surrogate microbes under laboratory and field use conditions.  Detailed 

information on microbial reductions is not available for the most widely used locally-

produced ceramic water filter in developing countries, including models produced in 

Cambodia (the CWP).   
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1.2.1.1  Hypothesis: objective 1 

Study hypotheses were: (i) that locally-produced ceramic filtration technologies in 

Cambodia, including filters with and without iron oxide and AgNO3 amendments, have 

the potential to achieve a mean 90-99% reduction in viral surrogates and a mean 99% 

reduction in bacterial surrogates over extended use periods and over a wide range of 

water quality characteristics, including those representing typical drinking water sources 

in Cambodia; (ii) that laboratory and field performance of filters would not differ 

appreciably with respect to microbial reduction; and (iii) that filters would maintain 

effectiveness through extended testing (greater than 500 l throughput) in both the 

laboratory and in situ.       

 

1.2.1.2  Study overview: objective 1 

Silver and iron oxide amendments, thought to increase microbiological 

effectiveness, have an unknown impact on the reduction of microbes in water treated by 

ceramic filters.  Therefore, laboratory studies focused on the performance of the CWP as 

currently produced in Cambodia with AgNO3 amendments (referred to in this study as 

the CWP1), a version of this filter supplemented with AgNO3 and iron oxides (the 

CWP2), and an additional test filter without iron oxide or silver amendments (the 

CWP3).  Laboratory experiments on the effectiveness of all three filters in the laboratory 

against E. coli and MS2 were followed by an 18-week field study of E. coli reduction in 

CWP1 and CWP2 filters in 120 households in the rural/peri-urban village of Prek Thmey, 

Cambodia.  Performance against E. coli in the laboratory using spiked environmental 

waters was compared with field reductions.   Field performance of filters was also 
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compared with boiling, as the most prevalent method for water treatment at the household 

level in Cambodia.   

 

1.2.2  Objective 2   

The second objective was to evaluate the health impacts of the CWP1 and CWP2 

filters in field use in a Cambodian village.  Reduction of diarrheal diseases in all people 

and in children under five years of age were the principal outcomes of interest.      

 

1.2.2.1  Hypothesis: objective 2 

The study hypothesis was that in households using the ceramic filters (of either 

type), the diarrheal disease prevalence proportion in the intervention groups would be 

≥20% less than in control households (without access to a filter).  The bases for this 

detectible level of diarrhea reduction were the meta-analyses by Fewtrell et al.  (2005) 

and Clasen et al.  (2006a; 2007), which concluded that POU water treatment 

interventions can substantially reduce diarrheal disease in users versus non-users, by a 

mean of approximately 30 - 40%.   

 

1.2.2.2  Study overview: objective 2 

The study design was a randomized controlled trial, a rigorous epidemiological 

method for the assessment of health impacts of drinking water interventions (NRC 2004).    

After collection of baseline data (four weeks), participating households in a rural 

Cambodian village in Kandal Province were randomly assigned to one of three groups of 

60 households: those receiving the currently produced filter (CWP1), those receiving an 
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alternative filter design (CWP2), and those receiving no filter (control).  Sample size 

calculations indicated that groups of 50 households were needed to detect a 20% 

reduction in diarrheal disease with 80% power, with nine post-baseline follow up visits.  

Households were followed for 18 weeks post-baseline with bi-weekly follow up to gather 

data on differences in proportions experiencing diarrheal illness over time by study 

group, controlling for clustering.  Detailed data on hygiene, sanitation, demographics, 

water use practices, and other potential covariates were collected and used to examine 

potential associations with the disease outcomes.  Exposure variables were presence of 

the intervention (either CWP1 or CWP2), water quality measures (e.g., E. coli/100 ml in 

household drinking water), and other WSH-related cofactors such as access to sanitation 

and hygiene behaviors.  Measured health data were diarrheal disease for each individual 

in the previous 7 days and bloody diarrhea in the previous 7 days in individuals of all 

ages and in children under 5 years of age (0-48 months at the start of the study).  A 

Poisson extension of generalized estimating equations (GEE) was used to produce 

estimates of effect reported as prevalence proportion ratios and incidence rate ratios 

between study groups, adjusted for clustering within households and within individuals 

over time.  Pooled and stratified longitudinal prevalence proportion ratios were reported 

for risk of diarrheal diseases in groups by exposure status.  Confounders were identified 

and adjusted for where appropriate based on an a priori 10% change-in-estimate 

criterion.           
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1.2.3  Objective 3   

The third objective was to evaluate continued use, continued microbiological 

effectiveness, and associated health impacts of the CWP filter after up to nearly four 

years of use (0 – 44 months) in households in three provinces of rural Cambodia.     

 

1.2.3.1  Hypothesis: objective 3 

The study hypothesis was that the CWP as currently produced would continue to 

be used effectively in households in rural Cambodia beyond initial intervention programs, 

and that use of the intervention would be associated with improved household water 

quality and a reduction in diarrheal disease among users against a matched control group 

of households that never had filters.   

 

1.2.3.2  Study overview: objective 3 

The hypothesis was tested using data collected on Cambodian CWP 

implementations undertaken by local NGOs in Cambodia from 2002 until 2006.  Data on 

continued use of the filters, diarrheal disease prevalence, microbiological performance, 

and important covariates were gathered to evaluate continued effectiveness and use in 

situ in Kandal, Kampong Chhnang, and Pursat provinces in Cambodia.  The study was 

carried out in three parts: (i) a cross-sectional study of households that originally received 

filters to determine uptake and use proportions, as well as factors associated with 

successful adoption; (ii) a water quality assessment in 80 households successfully using 

the filters (from part i) to determine the microbiological effectiveness of the filters in 

treating household water, comparing treated and untreated household drinking water; and 
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(iii) a longitudinal health study that compared diarrheal disease outcomes in 80 

households using the filters successfully to 80 control households (without filters).  

Control households were matched by drinking water source, socio-economic criteria, 

demographic data, and geographical proximity.  Water quality data were collected for 

control households as well, including stored, boiled water samples, if available.   
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CHAPTER 2:  LITERATURE REVIEW 

2.1  Introduction  

An estimated 1.8 million people die every year from diarrheal diseases, less than 

AIDS (2.8 million) but more than tuberculosis (1.6 million) and malaria (1.3 million) 

(WHO 2004).  The majority of deaths are associated with diarrhea among children under 

five years of age in developing countries, who are more susceptible to malnutrition, 

dehydration, or other secondary effects associated with these infections (WHO 2004).  

Taken together, diarrheal diseases are the third highest cause of illness worldwide and the 

third highest cause of death in children worldwide (WHO 2004).   Most diarrheal illness 

is associated with unsafe water, sanitation, and hygiene (Prüss-Üstün et al.  2004).  Prüss 

et al.  (2002) estimated that 4.0% of all deaths and 5.7% of the global disease burden are 

attributable to inadequate water, sanitation, and hygiene, including diarrheal diseases and 

other water-related diseases such as ascariasis and schistosomiasis, claiming 4.2% of 

disability-adjusted-life years (61.9 million) worldwide (WHO 2004).  The study of 

human health risks due to WSH-related pathogen exposure has been central to the field of 

environmental health for over 150 years (Snow 1855), although the current global burden 

of diarrheal disease suggests there is still progress to be made.   

An unknown percentage of the diarrheal disease burden is due solely to unsafe 

drinking water, since the viral, bacterial, and parasitic microbes causing diarrheal disease 

may also be transmitted through contaminated food, hands, fomites, or other routes 

(Wagner and Lanoix 1958).  Drinking water quality, however, does play an important 
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role in the risk of diarrheal diseases in humans and access to safe water is a major 

determinant of diarrheal disease outcomes.  Diarrheagenic organisms generally originate 

in fecal matter and are transmitted through the fecal-oral route of infection (Curtis et al.  

2000).  Traditionally, among the most serious waterborne risks to public health have been 

the bacteria Shigella spp. (bacterial dysentery), Vibrio cholerae (cholera), and Salmonella 

spp. (typhoid, paratyphoid fever).  Although these have mostly been eliminated from the 

developed world through advances in drinking water treatment, sanitation, and hygiene 

(Mackenbach 2007), they and other emerging and rëmerging pathogens continue to 

compromise water quality, and thus public health, in the less developed countries.   

 

2.2  Summits, targets, and initiatives 

The 1980s were declared the International Drinking Water and Sanitation Decade 

(IDWSD) by the United Nations General Assembly, a response to the Mar del Plata 

Action Plan produced at the 1977 United Nations Water Conference (UN 1992).  The 

Mar del Plata Action Plan proposed that “all peoples, whatever their stage of 

development and their social and economic conditions, have the right to have access to 

drinking water in quantities and of a quality equal to their basic needs” (UN 1992).  The 

IDWSD highlighted the problems of access which have always plagued developing 

countries but which have received increasingly widespread exposure from the 1960s 

(POST 2002).  In response to the IDWSD goal of universal access to water and 

sanitation, the 1980s saw an increase in the number of large, supply-oriented 

development projects that eventually provided access to many in the developing world 

(UN 1992, 18.5.d).  Despite progress made during this decade (1981-1990), increases in 
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access to adequate supplies of drinking water only just matched increases in population 

(estimated at 750 million), leaving much work yet to be done (Mintz et al.  2001).  The 

1992 United Nations Conference on Environment and Development (UNCED) or "Earth 

Summit" in Rio de Janeiro reiterated the goal of universal access to clean water and 

sanitation in its principal document, Agenda 21 (UN 1992, 18.5d).  The UN Millennium 

Declaration (2000) expressed the commitment of member states to “halve by the year 

2015 the proportion of people…who are unable to reach or to afford safe drinking water" 

(UN 2000).  The international commitment to this goal was affirmed at Johannesburg in 

2002 (UN 2002).  The year 2003 was declared the International Year of Freshwater by 

the United Nations.  At its 58th session, the United Nations General Assembly adopted a 

draft resolution, without a vote (A/RES/58/217), proclaiming 2005 to 2015 as the 

International Decade for Action – Water for Life.  This declaration restates the 

commitment of the international community to honor water and sanitation targets laid out 

previously in Agenda 21, the 2000 Millennium Development Goals, and the 

Johannesburg Plan of Implementation adopted at the of the World Summit of Sustainable 

Development in August 2002.  The stated goal of the "Water for Life Decade” is “a 

greater focus on water-related issues, with emphasis on women as managers of water to 

help to achieve internationally agreed water-related goals”.   

These and similar statements by the international community suggest the 

existence of broad political will for increasing access to safe drinking water.  The extent 

to which this will is translated into action at the national and local levels, however, is the 

critical issue (Gleick 1998).  Meeting the ambitious international goals for provision of 

safe water will require greater investment than that currently underway, especially given 
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the projected one-third increase in the world’s population by 2050 (Short 2002).  In 2003 

it was estimated that reaching the Millennium Goals would require providing access to 

safe water for 125,000 people per day every day for the 12 remaining years until 2015 

(WQHC 2003).  Because this lack of access to safe water is associated with a massive 

burden of disease, the World Health Organization (WHO) and others are eager to explore 

low-cost solutions for safe drinking water access, including decentralized technologies 

that can improve water quality post-source.  It is clear that innovative solutions are 

needed to increase safe water and sanitation coverage, although the best strategies for 

doing so are widely debated.   

 

2.3  Waterborne disease 

2.3.1  Types of water-related disease 

Unsafe water, sanitation, and hygiene are associated with a wide range of 

infectious diseases.  Water-related infections may be broadly classified into four 

categories by environmental transmission route: water-borne, water-washed, water-based, 

and water-related (Table 2.1).  This typology is commonly used by engineers and public 

health workers in identifying appropriate measures in interventions (Bradley 1977; 

Cairncross and Feachem 1993).  Water-borne infections are directly transferred to an 

individual from ingested food or drink that is contaminated by human or animal waste 

carrying pathogens.  This classification includes typhoid fever, cholera, hepatitis A virus 

(HAV), hepatitis E virus (HEV), and infections of Shigella spp and E. coli 0157:H7, 

among others (WHO 2006).  Water-borne diseases are best prevented by improvements 

in microbiological water quality and prevention of casual use of unimproved sources 
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(Bradley 1977).    Water-washed infections are the result of an inadequate supply of 

water for hygiene, facilitating the fecal-oral route of infection or transmission from one 

person to another (Gleeson and Gray 1997).  Scabies, trachoma, and bacillary dysentery 

are examples (Bradley 1977).  Water-washed diseases also include the water-borne 

diseases, since greater access to water provides for potentially better hygiene and more 

frequent hand washing, reducing the risk of disease (Curtis et al.  2000).    Water-based 

infections are classified as those transmitted by contact with water that provides habitat 

for human parasites during some part of their life cycle.  Disease is contracted either by 

direct skin contact or ingestion of a parasite or intermediate host living in the water.  For 

example, schistosomes and other trematode parasites spend part of their life cycles in host 

organisms living in water.  Schistosomiasis (bilharziasis) is caused in humans by the 

larval stage (cercariae) of the schistosome, which is transferred from infected snails to 

skin in contact with water (WHO 2006).  Water-related diseases are those carried by 

organisms that breed in water or bite near water. Examples are the Anopheles mosquito, 

which carries malaria, and the Aedes mosquitoes that carry the viruses causing dengue 

and yellow fever (Gleeson and Gray 1997).   
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Category Examples Relevant water 

improvements 
Appropriate measures 

Water-
borne 

Typhoid, 
cholera, hepatitis 

Microbiological 
improvements 
and protection of 
water from 
recontamination 

Improve drinking water quality, 
decrease use of unsafe water 
sources, safely store water in 
the home to prevent 
recontamination 

Water-
washed 

Scabies, 
trachoma, 
bacillary 
dysentery 

Increase water 
supply 

Improve availability and 
accessibility of water for 
hygiene, improve hygiene in 
other ways 

Water-
based 

Schistosomiasis, 
dracunculiasis  

Protection of user 
and/or source 

Decrease need for water 
contact, reduce surface water 
contact, control vector 
population, reduce surface 
water contamination  

Water-
related 

Malaria, 
sleeping 
sickness, dengue 
and yellow fever 

Piped water 
supply, protected 
wells, sealed 
water storage  

Improve surface water 
management, control breeding 
sites, control access to breeding 
sites, use mosquito netting and 
other interventions  

Table 2.1.  Classification of infectious diseases related to water and sanitation.  Adapted 
from Bradley 1977, Storeygard 2002, Gleeson and Gray 1997, Cairncross and Feachem 
1993. 
 
 

2.3.2  Waterborne pathogens 

Waterborne infectious diseases are caused by pathogenic bacteria, viruses, 

protozoa, or other parasites in water.  Traditionally, among the most serious waterborne 

threats to public health in temperate regions have been Shigella (causing bacterial 

dysentery), Vibrio cholerae (cholera), and Salmonella (typhoid, paratyphoid).  Although 

these have mostly been eliminated from the more developed world through appropriate 

water, sanitation, and hygiene improvements, these and other bacterial pathogens 

continue to compromise water quality and public health in the less developed countries 

(Gleeson and Gray 1997).  Viral pathogens are also increasingly recognized as important 
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agents of diarrheal illness worldwide.  Norovirus, rotavirus, hepatitis A and E viruses, 

and enteroviruses are all responsible for waterborne disease outbreaks.  Parasites such as 

the protozoa Giardia intestinalis and Cryptosporidium parvum continue to cause disease 

in developed and developing countries and are increasingly identified as etiologic agents 

in outbreaks of gastroenteritis.  Other intestinal parasites, such as nematodes and cestodes 

(hookworm and tapeworm), may be transmitted through drinking water, although this is 

less common.   

Diarrheagenic organisms generally originate in fecal matter and are transmitted 

through the fecal-oral route of infection (Curtis et al.  2000).  Drinking water is only one 

possible means of infection; the fecal-oral route also includes transmission via soiled 

food, hands, clothing, or utensils (ibid., Wagner and Lanoix 1958).  These routes are 

especially important where sanitation and hygiene are inadequate (WHO 2006).   

 

2.3.3  Diarrheal diseases 

The word "diarrhea" is derived from the ancient Greek for “leakage” (διαρροή, 

literally "flowing through", Schiller 2002).  Diarrheal disease is characterized by lower 

than normal stool consistency and greater than normal stool frequency. Some definitions 

also include a third component of increased stool weight (e.g., > 200 g/24 hr) (ibid.).  A 

common definition is "three or more loose or watery stools within a 24 hour period" 

although in practice this is variously defined by patients and health care workers.   

Diarrheal illnesses range from acute syndromes such as cholera and dysentery to 

extended or chronic illnesses like typhoid fever and Brainerd diarrhea.  Typical 

symptoms may vary with the age, immune system health, nutritional status, and other 
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characteristics of the individual, and with the etiologic agent or agents responsible for 

infection.  Some causes of infectious diarrhea may result in serious long-term sequelae 

such as hemolytic uremic syndrome, Guillain-Barré syndrome, and malnutrition (leading 

to stunted growth and greater susceptibility to disease).  In otherwise healthy, 

immunocompetent individuals, cases may be self limiting and usually resolve within a 

few days.  In chronic infections, symptoms may persist for weeks, with serious risks to 

health, especially in children, as a result of severe dehydration and other effects. 

Malnutrition increases both the susceptibility and severity of infection, representing both 

a cause and effect of diarrheal disease (Gadewar and Fasano 2005).  Dysentery, or bloody 

diarrhea, causes about 20% of deaths associated with these infections, with 35% of deaths 

attributable to non-dysenteric acute diarrhea and 45% attributable to persistent diarrhea 

(Blaser 1995; Black 1993; Clasen et al.  2006a).   

The effects of exposure to pathogens are unevenly distributed in populations, with 

the greater disease burden carried by the young, elderly, pregnant, or immuno-deficient 

(WHO 2006).  Children are particularly susceptible to diarrheal disease and are more 

likely to die from the effects.  According to Bartram (2003), children bear 68% of the 

global diarrheal disease burden, with 17% of all deaths in children under five years of age 

attributable to these diseases and their sequelae (UN 2005; cited in Clasen 2006a).  

Coinfection with HIV/AIDS increases chronic illness and mortality associated with 

diarrheal diseases (Grant et al.  1997; Colebunders et al.  1987; Brink et al.  2002; Kaplan 

et al.  1996; and Hayes et al.  2003).    At the global level, a disproportionately high level 

of risk of water related disease is borne by the world’s poor; approximately half of all 

people living in developing countries at any given time has a health problem caused by a 
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lack of water and sanitation (Moszynski 2006).  The CDC estimates that greater than 2 

billion people are at high risk for diarrheal infection in the developing world, due to 

unsafe water, sanitation, and hygiene (CDC 2003).   

 Oral rehydration therapy (ORT), mineral supplements (e.g., zinc), and treatment 

with probiotics (e.g., Lactobacillus) and antibiotics are common treatments worldwide 

for acute diarrheal diseases (Sur and Bhattacharya 2006).  Access to health care or 

appropriate treatment is often not common in the developing world, however.  Some 

advocate the development of vaccines to common diarrheal disease agents as an 

alternative to increasing water, sanitation, and hygiene coverage, improvements that may 

be seen as "impractical" (Gadewar and Fasano 2005; Nataro 2004).  Others identify key 

treatment and vaccine options as complementary efforts to increasing access to safe 

water, sanitation, and hygiene (Thapar and Sanderson 2004).  Sanitation (including 

improved sewage disposal and clean water supply systems) has been voted the most 

important medical milestone since 1840 (over anesthesia, antibiotics, and vaccines) in a 

poll conducted by the British Medical Journal (BMJ) (Mackenbach 2007), largely due to 

the substantial reduction in infectious diseases (e.g., cholera and other diarrheal diseases) 

experienced by populations having access to improved water and sanitation.   

        

2.3.4  Diarrhea and drinking water 

Improved drinking water quality, sanitation, and hygiene practices are all widely 

believed to be important in reducing the burden of diarrheal disease, although the relative 

importance of these factors is widely debated in the literature (e.g. Tumwine et al.  2002; 

Macy and Quick 2002; Curtis et al.  2000; Esrey et al.  1991).  Up to 30% of the global 
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diarrheal disease burden may be associated with consumption of unsafe drinking water 

(Macy and Quick 2002).  That each of these factors is important in achieving a reduction 

in the water-related disease burden is widely acknowledged (WHO 2006).  But given the 

reality of scarce international funding and widespread pressure on obtaining the 

maximum reduction of disease per dollar spent, it is important to identify which strategies 

and combinations of strategies are most efficient in achieving the goals set by the 

international community.  Drinking water quality is now increasingly recognized as being 

as important as other water, sanitation, and hygiene factors in determining diarrheal 

disease risk (Clasen and Cairncross 2004; Fewtrell et al. 2005; Clasen et al. 2006a; 

Clasen et al. 2007).  Previous reviews have emphasized the importance of water supply, 

sanitation, and hygiene improvements over drinking water quality in the reduction of 

diarrheal disease (Young and Briscoe 1988; Esrey et al.  1988; Esrey et al.  1991; 

Cairncross 1992). 

 

2.4  Access to safe water   

Between one and two billion people lack adequate access to improved water 

sources and a greater number lack access to microbiologically safe water as defined by 

the Guidelines for Drinking Water Quality (WHO 2006; WHO 2004; Tumwine 2002). 

Thus this basic human need and, according to the United Nations, basic human right, 

remains beyond the reach of between one-sixth and one-third of the world’s population 

and a much higher percentage of the world’s poor (UN 1992; WHO 2003; Short 2002; 

Tumwine 2002).  Inadequate access to safe drinking water contributes to the staggering 

burden of diarrheal diseases worldwide.  Drinking contaminated water can also reduce 
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personal productive time by an estimated 10%, with widespread economic effects (UN 

1992).  Over 440 million school days are missed annually due to WSH-related illnesses 

(Moszynski 2006).  Problems associated with poor drinking water quality are significant 

barriers to development, both human and economic.   

The United Nations’ Millennium Development Goals (MDG) address the 

desperate need to provide safe drinking water to those who need it, which currently 

includes 40% of the population in Africa, 19% in Asia and 15% in Latin America and the 

Caribbean. The problem is becoming more serious as the urban populations of Africa and 

Asia may double in 25 years, while those of Latin America and the Caribbean are 

expected to increase by 50%.  The MDG target of halving the population without access 

to safe drinking water by 2015 is sorely off pace for some areas of the world, notably 

sub-Saharan Africa (Anyangwe et al.  2006), but expanded access to basic needs such as 

clean water and adequate sanitation remains an important long-term goal.   

 

2.5  Point-of-use water treatment interventions   

Waterborne diseases are preventable through effective control measures (Clasen 

et al. 2007; Fewtrell et al. 2005).  The emergence of POU water treatment technology as 

a strategy for safe water provision at the household level may have significant health 

impacts in populations lacking the means to secure safe drinking water.  With the 

formation of the International Network to Promote Household Water Treatment and Safe 

Storage (INPHWTSS) and its acceptance at the Third World Water Forum in Kyoto 

(2003), broad-based international attention has been focused on this strategy. It is 
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expected that the use of POU water treatment technologies will contribute to accelerated 

health gains from improved access to clean, safe drinking water (Sobsey 2002).  

Drinking water quality improvements, such as effective household-scale water 

treatment, can have a significant health impact, although the relationship between 

measured indicators of water quality (such as E. coli) are often associated only tenuously 

with measured diarrheal disease outcomes (Jensen et al.  2004; Moe et al.  1991).  Recent 

studies have shown that reductions in diarrheal disease are attainable through household-

scale drinking water treatment (Clasen et al.  2004; Colwell et al.  2003; Sobsey et al.  

2003; Conroy et al.  200l), leading to greater interest in these interventions worldwide 

(Clasen and Cairncross 2004).  Previous reviews of the impacts of water supply, water 

treatment, sanitation, and hygiene interventions on diarrheal disease concluded that 

hygiene and sanitation, followed by water supply and water quality, were the most 

important interventions to prevent diarrheal disease in less developed countries (Esrey et 

al.  1985, 1986, and 1991).  In these seminal reviews of field trials of water and sanitation 

interventions, results indicated that hygiene interventions reduced diarrheal disease by 

33%, sanitation 22%, water supply 22%, water quality 17%, and multiple interventions 

20%.  However, household-based water treatment or other household water quality 

interventions were not included in these analyses.  Quality of water in the home, 

however, has been shown to be critical to health, since this is the water that is usually 

used for drinking (Jensen et al.  2002).  The findings of two recent meta-analyses show a 

much stronger protective effect for water quality interventions at the household level on 

diarrheal disease outcomes (Table 2.2; Fewtrell et al.  2005; Clasen et al.  2006a).  The 

conventional wisdom that water quality interventions, while part of the solution, were at 
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best a component of larger interventions including hygiene education, sanitation, and an 

improved water supply, with the most important of these being hygiene (Curtis and 

Cairncross 2003), has now been refined to recognize the importance of household 

drinking water quality as a critical exposure variable related to diarrheal disease 

outcomes in developing countries.       

A further meta-analysis and systematic review undertaken by Clasen et al.  (2007) 

incorporated 33 trials on household-based interventions, including point-of-use 

chlorination, filtration, solar disinfection, combined flocculation and disinfection, and 

improved storage.   Results indicate that these interventions reduce diarrheal disease in 

people of all ages (longitudinal prevalence proportion ratio  = 0.70, 95% CI 0.56 to 0.88, 

9 trials) and in children under 5 years of age (longitudinal prevalence proportion ratio = 

0.76, 95% CI 0.66 to 0.88, 9 trials).  Further analyses were performed within specific 

intervention categories and results were stratified by outcome measure (odds ratio, 

longitudinal prevalence proportion ratio, rate ratio, risk ratio).  Household-based 

interventions were more effective than water quality interventions at the source (ibid; 

Clasen et al. 2006a); consistent use of the technology was associated with greater 

effectiveness; and evidence did not support the conclusion that technologies have a 

greater effect when bundled with other interventions.   

An important finding of the Clasen et al.  review (2006a, 2007) is that only  four 

of 22 randomized controlled trials included in the analysis were blinded (using a placebo 

group), and no blinded trial showed a protective effect against diarrheal disease in users.  

This fact highlights the primary deficiency of the literature constituting the evidence base 

for water quality interventions that are intended to reduce diarrheal disease.   
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Type of intervention Number of 

studies 
Rate ratio pooled 
effect (95% CI) 

Hygiene 11 0.63 (0.52 – 0.77) 
  Excluding poor quality studies 8 0.55 (0.40 – 0.75) 
  Handwashing 5 0.56 (0.33 – 0.93) 
  Education 6 0.72 (0.63 – 0.83) 
Sanitation 2 0.68 (0.53 – 0.87) 
Water supply 6 0.75 (0.62 – 0.91) 
  Diarrhea only 4 1.03 (0.73 – 1.46) 
  Household connection 2 0.90 (0.43 – 1.93) 
  Standpipe or community connection 3 0.94 (0.65 – 1.35) 
Water quality 15 0.69 (0.53 – 0.89) 
  Source treatment only 3 0.89 (0.42 – 1.90) 
  Household treatment only 12 0.65 (0.48 – 0.88) 
  Household treatment   
           excluding poor quality studies 8 0.61 (0.46 – 0.81) 
           rural location 6 0.61 (0.39 – 0.94) 
           urban/periurban location 5 0.86 (0.57 – 1.28) 
           urban/periurban excl. Sathe et al.  1996 4 0.74 (0.65 – 0.85) 
Multiple (combinations of the above) 5 0.67 (0.59 – 0.76) 
Table 2.2.  Results of meta-analysis of effects of water-related interventions on diarrhea 
from Fewtrell et al.  (2005).  CI = confidence interval.   
 
 
2.5.1  The roles of point-of-use (POU) water treatment 

Centralized water treatment and delivery systems have many advantages, 

including significant economies of scale over decentralized systems and potential ease of 

access to water in quantity.  Traditional strategies for provision of access to safe drinking 

water are not, however, meeting the needs of the 1-2 billion people who lack access to 

improved drinking water sources and the potentially much greater number without access 

to microbiologically safe water.  Piped supplies require high capital investment, a 

concentrated population large enough to justify construction, a suitable raw water source 

of high quality or centralized treatment, and ongoing operation and maintenance costs 

requiring fees of users.  Inadequate treatment and aging or compromised distribution 

systems are the norm in developing countries; these systems do not generally deliver 
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water of high quality (Luby et al.  2000; Lykins et al.  1994; Reller et al.  2001; Weber et 

al 1994; Swerdlow et al.  1992).   Urban municipal supply systems in the developing 

world often require some point-of-use treatment, either through boiling or an alternative 

like ceramic microfiltration (Gleeson and Gray 1997, 161).  POU systems may find a 

great deal of use in more developed countries as well, either in places not served by a 

municipal system or in places where doubts exist as to the quality of the public water 

supply (Lykins et al.  1994).  They can also be used to improve aesthetic qualities of 

otherwise safe water that meets regulation (ibid.).  Often, chlorination at the plant does 

not guarantee sufficient residual chlorine at all points in the distribution system, as was 

the case at Guayaquil, Ecuador (Weber et al 1994), in a study from Madagascar (Reller et 

al.  2001), and one from Peru (Swerdlow et al.  1992).  Chlorine is also not suitable for 

use against encysted protozoa such as Giardia and Cryptosporidium, two common 

waterborne pathogens (Warwick 2002).  The reasons for failures in municipal systems 

are contamination of source water which is passed on to users with insufficient or no 

treatment, inadequate chlorination to maintain chlorine residual to the entire system, 

contamination in transit through poorly maintained distribution systems and problems 

with illicit connections, and low or intermittent system pressure allowing back-siphonage 

of contaminating material into the system (ibid.).   

Alternatives to the traditional models of safe water provision are sorely needed in 

the developing world.  In addition to improved access to sufficient water quantity, water 

quality improvements at the “point of use” (POU), usually at the household level, are 

critical to protecting public health.  With the formation of the International Network to 

Promote Safe Household Water Treatment and Storage at the Third World Water Forum 
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(Kyoto, March 2003), broad-based international attention has been focused on this 

strategy.  Point of use (POU) water treatment technologies are any of a range of devices 

or methods employed for the purposes of treating water in the home or at point of use in 

other settings.  These are also known as household water treatment (HWT) or, when 

included with technologies or methods for safely storing drinking water, household water 

treatment and safe storage (HWTS) .  Most current POU technologies are intended to 

reduce microbial pathogens, although some also reduce chemical and radiological 

contaminants.  Taken together, POU systems comprise a range of intermediate 

technologies (Schumacher 1973) with the goal of rapidly increasing access to clean water 

at the lowest possible cost to individuals and communities.  These systems are 

increasingly touted as practical solutions to problems of degraded drinking water quality 

in the developing world, where collecting water outside the home and storing it for 

household use is the norm and generally unsafe water is delivered via piped supplies 

where it is available (Chaudhuri and Sattar 1990; Sobsey 2006).  The use of POU systems 

may contribute to “accelerated health gains” from improved access to clean drinking 

water where centralized water treatment and delivery systems are unavailable or 

inadequate (Sobsey 2002).   

Household-based drinking water treatment, because it does not deliver water 

through a pipe, cannot represent a method for provision of safe or "improved" water 

under the definitions in use by the Joint Monitoring Programme (WHO and UNICEF 

2005), and thus may not contribute to Goal 7, target 10 of the MDGs as currently defined, 

although POU water treatment is gaining recognition as a potential method of providing 

access to safe drinking water (UN 2005).  While both quantity and quality of water have 
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significant public health impacts (Fewtrell et al.  2005; Clasen et al.  2006a), a greater 

focus on making water safe to drink is needed for WSH development to significantly 

reduce the diarrheal disease burden in developing countries (Sobsey 2002; Sobsey 2006).   

Ideally, POU systems can also safeguard against stored water contamination in 

the home through unsafe water handling practices, known to be a major cause of 

degraded drinking water quality (Clasen and Bastable 2003; Jensen et al.  2002; Momba 

and Kaleni 2002; Brick et al.  2004; Mintz et al.  1995; Wright et al.  2004).  For this 

reason safe storage is an important aspect of some technologies used for drinking water 

treatment or safe storage containers may be used as a stand-alone technology for 

protecting water quality where the main source of contamination is improper handling 

(Mintz et al.  1995; Clasen et al.  2004; Roberts et al.  2001).  Devices that store water 

safely prevent users from dipping hands or other potentially contaminated objects into the 

water container, acts that may introduce disease causing microbes.  Safe storage 

containers thus usually have a narrow mouth (so that water is obtained by pouring, not 

dipping) or a tap that dispenses the stored water into a cup for drinking.  While there are 

ways around safe water storage systems, the concept of using design to prevent 

recontamination in the home is a good one and this strategy has been linked to gains in 

health.      

Household water treatment may be especially critical for use in populations with 

greater susceptibility to waterborne infectious diseases, since those with HIV/AIDS or the 

malnourished are more susceptible to chronic morbidity and mortality as a result of 

diarrheal disease (Lule et al.  2005; Gadewar and Fasano 2005).  Vulnerable populations 
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are growing as HIV/AIDS and other factors increase susceptibility to waterborne 

infections (Sattar et al.  1999). 

Point-of-use treatment is also suited to crisis interventions where emergency 

supplies of potable water are needed (Curtis et al.  2000; Mong et al.  2001; Clasen 2005; 

WHO 2005), although in practice emergency implementation is not straightforward 

(Clasen and Boisson 2006).  Breakdowns in water supply systems can occur as a result of 

natural disasters, war and human conflict, or simply inadequate maintenance of 

infrastructure (Curtis et al.  2000).  POU treatment can also be used in temporary 

settlements such as refugee camps or shelters (Roberts et al.  2001; WHO 2006; Doocy 

and Burnham 2006).     

 

2.5.2  POU water treatment: technologies    

Key reviews of POU water treatment and safe storage technologies have 

advanced the current knowledge about practical aspects of these interventions and their 

application in developed and developing countries (Sobsey 2002; Lantagne et al.  2006; 

HIP 2006; IRC 2005).  Physical methods for small-scale water treatment include boiling, 

heating (using fuel and solar), filtering, settling, and ultraviolet (UV) radiation (solar or 

ultra violet lamps).  Chemical methods include coagulation-flocculation and 

precipitation, ion exchange, chemical disinfection with germicidal agents (primarily 

chlorine), and adsorption.  Combinations of these methods simultaneously or sequentially 

often yield promising results, for example coagulation combined with disinfection 

(Souter 2003).  Other combinations or multiple barriers are media filtration followed by 

chemical disinfection, media filtration followed by membrane filtration, or composite 
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filtration combined with chemical disinfection (Clasen et al.  2006c). These and other 

reviews of technologies have suggested that success of interventions is highly context-

specific, with no one technology or method representing a universal best solution.  

Availability of materials, quality of raw water available, cultural factors and preferences, 

or cost may determine where each of these is most suited to POU water treatment 

applications in developing countries (Sobsey 2002).   

 

2.5.2.1  Existing standards for microbiological effectiveness 

Water treatment technology verification protocols for microbiological 

performance, often referred to as ETVs after the US EPA's Environmental Technology 

Verification program, exist in the United States and some other countries.  Current 

standards for point-of-use water treatment for the United States specify a minimum 6 

log10 (99.9999%) reduction in bacteria, 4 log10 (99.99%) reduction in viruses, and 3 log10 

(99.9%) reduction in protozoan parasites demonstrated over a range of conditions and for 

prescribed volumes of water treated using specific test microbes (USEPA 1987; NSF 

2003).   

All developed country protocols are highly prescriptive and are often intended to 

independently verify performance claims made by a manufacturer that may be linked to 

country-specific standards, not necessarily derived from health-based targets as 

articulated in the WHO Guidelines for Drinking Water Quality (WHO 2006).  They 

typically specify the test pathogens or chemicals, test (challenge) water quality, 

frequency and duration of challenging the technology with contaminant-laden water, 

minimum contaminant reduction requirements, and other procedural and performance 
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specifications.  Current protocols have the advantage of being universal, thus enabling 

direct comparisons to be made among a wide range of technologies.  However, the 

protocols were developed principally for devices and unit processes to be used in 

developed countries and are less suited to conditions and POU water treatment and 

storage practices in developing countries.  No international standards yet exist for the 

verification of household water treatment technologies, although WHO-led efforts to 

establish performance and testing guidelines based on the risk-based framework 

articulated in the Guidelines for Drinking Water Quality (WHO 2006) are underway.  

Such guidelines will need to be flexible because of varying laboratory capabilities, 

resources, and implementation contexts; emerging and evolving technologies; and the 

goal of encouraging incremental improvements in performance.  The availability of new 

or modified protocols, material and methods for laboratory verification will enable 

manufacturers, regulators and implementers to ensure effectiveness of candidate POU 

technologies while providing flexibility and consideration of local conditions and needs.   

 

2.5.2.2  Filtration technologies 

POU filtration technologies include cloth or fiber filters, membrane filters, porous 

ceramic filters, and granular media filters (Table 2.3).  These filters reduce microbes by a 

combination of physical and chemical (and, in some cases, biological) processes 

including physical straining, sedimentation, and adsorption.  Filtration technologies are 

finding increasing application in developing countries where chemical disinfection or 

boiling may not always be practical or effective (Colwell et al.  2003).       
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Traditional membrane technology is generally expensive and therefore largely 

unknown for small scale drinking water treatment in developing countries, although 

reverse osmosis and other membrane technologies are common in developed countries 

(Payment et al.  1991; Hörman et al.  2004) and may be used by travelers to developing 

countries (Backer 2002).  These advanced filters may include composite filters that 

employ several methods for reduction of microbes in water.  Some low-cost applications 

of these types of filters have been in development and may have a role to play in the 

future of household water treatment in developing countries.     

Cloth filters, such as those of sari cloth, have been recommended for reducing 

Vibrio cholerae in water when these are associated with copepods or other eukaryotes in 

water (Colwell et al.  2003; Huo et al.  1996).  These cloths will not significantly retain 

dispersed bacteria not associated with copepods, other crustaceans, suspended sediment, 

or large eukaryotes because the pores of the cloth fabric (>20 µm) are not sufficiently 

small to exclude bacteria, but where appropriate these filters can have significant health 

impacts.  Colwell et al.  2003 reported a 48% reduction in cholera associated with use of 

the filters over a 35 month trial that included 65 villages in rural Bangladesh and 

approximately 133,000 participants.  Cloth filters have also been critical interventions in 

guinea worm (dracunculiasis) eradication programs (Aikhomu et al.  2000; Olsen et al.  

1997). 

Granular media filters include those containing sand, diatomaceous earth, or 

others using discrete particles as packed beds or layers of surfaces over or through which 

water is passed.  Other granular media filters are biologically active because they develop 

layers of microbes and their associated exopolymers on the surface of or within the 
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granular medium matrix.  This biologically active layer, called the schmutzdecke in 

conventional slow sand filters, retains microbes and often leads to their inactivation and 

biodegradation.  A household-scale filter with a biologically active surface layer and that 

can be dosed intermittently with water has been developed called the BioSand filter, 

which is an intermittently operated slow sand filter (IOSSF) (Stauber et al.  2006).  The 

BioSand system has been the subject of several studies (Duke et al.  2006a; Stauber et al.  

2006).   
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Treatment 
process 

Pathogen  
group 

Baseline 
removal 
(LRVa)b 

Max. 
removal 
(LRV)c 

Notes References 

Bacteria 2+ 6+ 
Viruses 0+ 4+ 

Membrane 
Filtration 

Protozoa 2+ 6+ 

Varies with membrane pore size (micro-, ultra-, nano-  and 
RO filters), integrity of filter medium and filter seals and 
resistance to chemical and biological “grow through”) 
degradation 

Jacangelo  
et al.  1997; 
Hörman  
et al.  2004 

Bacteria 1 2 
Viruses 0 0 

Fiber and fabric 
filters (e.g., sari 
cloth filters) Protozoa 0 1 

Particle- or plankton- association increases removal of 
microbes, notably V. cholera; protozoa  >20 µm may be 
removed (G. intestinalis is 14 µm, C. parvum 3-5 µm); 
ineffective for viruses and dispersed bacteria  

Colwell et al.  
2003; Huo et 
al.  1996 

Bacteria 2 6 
Viruses 0.5 4 

Porous ceramic 
filtration  

Protozoa 4 6 

Varies widely with pore size, pore structure, and tortuosity; 
flow rate; possibly with filter medium augmentation via 
silver or other chemical agents 

Lantagne  
2001a,b;  
Sobsey 2002; 
unpublished 
data  

Bacteria 1 3 
Viruses 0.5 2 

Intermittently 
operated slow 
sand filter 
(IOSSF) 

Protozoa 2 4 

Varies with filter maturity, operating conditions, flow rate, 
pause time, grain size, filter bed contact time, and other 
factors; POU systems based on modifications of traditional 
slow sand filtration may differ in microbial removal from 
slow sand filtration     

Hijnen et al.   
2004; Timms  
et al.  1995;  
Stauber et al.  
2006 

a.  Log10 reduction value, a commonly used measure of microbial reduction, computed as log10 (pre-treatment concentration) – 
log10 (post-treatment concentration).   
b.  Baseline reductions are those typically expected in actual field practice when done by relatively unskilled persons who apply 
the treatment to raw waters of average and varying quality in developing countries and where there are minimum facilities or 
supporting instruments to optimize treatment conditions and practices.   
c.  Maximum reductions are those possible when treatment is optimized by skilled operators who are supported with 
instrumentation and other tools to maintain the highest level of performance in waters of predictable and unchanging quality  

Table 2.3.  Estimates of baseline and maximum effectiveness of filter technologies against microbes in water, including porous 
ceramic filtration and other proposed POU filtration technologies.   
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2.6  Ceramic filters for drinking water treatment 

Ceramic filtration is the use of porous ceramic (fired clay) to filter microbes or 

other contaminants from drinking water.  Ceramic filtration for drinking water treatment 

has a long pedigree, having been used in various forms since antiquity; modern historical 

references to ceramic water "drip" filters with safe storage elements suggest they have 

been used widely for over 100 years in Latin America (García Márquez 1999, p109-110) 

and ceramic filters have been produced in Britain at least since 1850.  Today, pore sizes 

can be made small enough to remove virtually all bacteria and protozoa by size 

exclusion, down to 0.2 µm, in the range referred to as microfiltration.  Ceramic filters are 

also often enhanced with a variety of silver-containing microbiocidal amendments that 

are either painted onto the surface, impregnated into the ceramic matrix before or after 

firing, or applied to filter elements in other ways.  Silver nitrate solutions or colloidal 

suspensions of silver are most often used for this purpose, a practice that began in the 

early 20th century to control the problem of bacterial growth in porcelain (ceramic) 

Pasteur household-scale water filters (Merriman 1906).   

Ceramic filtration technology may be broadly divided into two categories: the 

relatively advanced technology of those filters made in more developed countries, which 

are made to exact specifications with considerable quality control and commensurate 

cost; and those made in developing countries, where there is some variation in 

effectiveness but which often employ local materials and expertise, producing a product 

that is relatively inexpensive and locally available.  The principal example of the latter is 

the Filtrón project undertaken by Potters for Peace, an NGO that promotes the 

technology (Lantagne 2001a, 2001b).   The filters have been the focus of increasing 
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research during the 1990s and 2000s through partner organizations of the WHO 

International Network to Promote Household Water Treatment and Safe Storage.   

Low cost ceramic filtration for drinking water treatment in developing countries is 

diverse, varying by overall design, production method, clay and other materials, quality 

assurance and quality control (QA/QC) procedures, burnout material, firing temperatures 

and methods, chemical (e.g., colloidal silver) amendments, and other characteristics 

(Lantagne 2001; Sobsey 2002; Cheesman 2003; Dies 2003).  Because the design and 

available materials and methods vary widely from region to region, few generalities can 

be made about low cost ceramic filters as a whole.  Also, effectiveness data for one 

ceramic filter design may not be representative of other systems, or even in some cases of 

separate batches of filters made at the same factory.  Moreover, these technologies are in 

flux as NGOs and others work to test and improve the technologies to be more effective 

interventions for improving water quality at the point of use.     

 

2.6.1  Local ceramic water filter technology 

Locally produced ceramic filters have the advantages of being lightweight, 

portable, relatively inexpensive, and low-maintenance.  Filters provide for removal of 

microorganisms from water by gravity filtration through porous ceramic, with typical 

flow rates of 1-3 l/hr.  Used with a controlled access storage receptacle, water is safely 

stored to prevent recontamination.  Unlike chemical or thermal disinfection, ceramic 

filters do not significantly change water taste or temperature and do reduce turbidity: 

aesthetic improvements that may be strong motivators for use of the technology to treat 

household water (Brown 2003; Roberts 2003; Clasen et al.  2004).  Filters have 



 

 

35

35

functional stability in the sense that they have only one moving part (the tap) and require 

no external energy source (such as UV lamps) or consumables (such as chlorine packets, 

or media that must be regenerated or replaced).  They have a potentially long useful life 

of 5+ years (Lantagne 2001b; Campbell 2005) with proper care and maintenance, 

although manufacturers and implementers may recommend regular replacement of the 

filter element every 1-2 years.  The ceramic filter surface is regenerated through periodic 

scrubbing to reduce surface deposits that slow filtration rates.  Therefore the useful life of 

a ceramic filter may be limited by the frequency of cleaning, and thus the quality of water 

being treated, and the thickness, since repeated cleaning will eventually degrade the filter 

element.   Filter breakage, however, is more commonly cited as the primary reason for 

discontinued filter use, although breakage is associated with more frequent handling 

(including regular cleaning), highlighting the potential links between user behavior and 

filter longevity in household use.  Costs of filters vary, but most retail in the US$5 – 

US$25 range.  The CWP in Cambodia retails for under US$10 in 2007.  Replacement 

filter elements cost US$2.50-$5.00 in Cambodia.  Since filters can be made locally by the 

private sector, they can also provide a source of income in poor communities, although 

most production of the CWP-type filters worldwide to date is NGO-based.   

 

2.6.2  Development of the ceramic water purifier (CWP)  

With financial aid from the InterAmerican Development Bank, as part of a 

development and diffusion of intermediate technology program, ICAITI (the Instituto 

Centroamericano de Investigación y Technología Industrial, a research institute based in 

Guatemala) developed a prototype ceramic filter to be used for drinking water treatment 
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in rural areas of Central America from 1981 (AFA Guatemala 1995).  The filter design 

has been in development since then with the involvement of several NGOs in Latin 

America and around the world, with the NGO Potters for Peace (PfP) playing a key role 

in the diffusion of the technology since 1998.  The PfP filter, called Filtrón in Latin 

America, the C.T. Filtron in Ghana, and the Ceramic Water Purifier (CWP) in Cambodia, 

is now produced in Nicaragua, El Salvador, Guatemala, Honduras, Cambodia, and 

Ghana.  Current start-up projects (not producing filters in 2007) exist in Cuba, Colombia, 

Mexico, Bali, the Dominican Republic, Ecuador, Sri Lanka, Myanmar, Yemen, Kenya, 

Tanzania, and Benin (Lantagne 2007; Rivera 2007).    Program success and 

implementation models vary widely between countries and there are no standardized 

production or quality control methods for the filters (Figure 2.1).   
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Figure 2.1.  The ceramic water purifier (CWP) and porous ceramic pots stacked for 
drying, as manufactured by Resource Development International, Kandal Province, 
Cambodia.  Porosity in the ceramic (< 1 µm and larger) is created by mixing finely 
ground rice husks into the clay, which combust in the firing process to leave behind pore 
spaces.  Water passes through the porous ceramic filter element by gravity (capacity 
approximately 10 l) at 1-3 l/hr into the receiving container (20 l), where it is dispensed 
via a tap to prevent post-filtration contamination of the product water through dipping or 
other contact with soiled hands or vessels.  Filters are treated with a AgNO3 solution to 
reduce microbial recontamination of the filter and biofilm formation and increase 
microbiological effectiveness.   
 
 
2.6.3  Microbiological effectiveness of low cost ceramic water filters 

The reduction of microbial pathogens through treatment by ceramic filtration may 

involve one or more physical or chemical processes.  Mechanisms may vary widely 

between filters and have not been adequately characterized.  In the case of low-cost, 

locally-made filters, the pore size varies widely by ceramic material, burnout material, 

firing temperature, and other factors; filter void spaces tend to have a tortuous 

configuration (Fahlin 2003) that may contribute to increased microbial removal 

efficiency.  Microbe or chemical interactions such as sorption with the filter's ceramic 

surface may also effect reductions of key contaminants.  In the Potters for Peace (PfP) 
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process, most commonly a colloidal silver solution is painted onto or used as a bath to 

soak ceramic filter elements.  Silver nitrate is used to treat the CWPs produced by the 

NGO Resource Development International in Cambodia.  These amendments are widely 

held to increase the microbiological effectiveness of the filter and to inhibit biological 

growth within the filter.  Lantagne (2001a) provides a comprehensive overview of the use 

of silver amendments in the low-cost ceramic filters.  Silver impregnation is also 

commonly found in commercially available ceramic filters available in the USA and 

Europe.        

The evidence base for microbiological effectiveness of the ceramic water filters in 

the laboratory and in field use remains inadequate.  Studies to date have been limited in 

scope, methodological rigor, and quality, often with little information about untreated 

versus treated water quality (matched pre- and post-treatment samples) and little 

information on analytical methods used, sample handling and processing, volume 

sampled, replicates, dilutions, incubation, detection limits, and other relevant 

information.  Lantagne (2001a) provides a general review of early effectiveness studies 

on the filters as produced in Central America.  No studies on low-cost ceramic filters 

have been published in the peer reviewed literature, although several studies have 

provided some evidence that links filter use to improvements in water quality at the point 

of use.  Non-peer reviewed studies by Roberts (2003), Lantagne (2001a), Duke et al.  

(2006b), Val Halem (2006), Baide (2001), AFA Guatemala (1995), Mattelet (2006) and 

others have suggested that low-cost, PfP-type ceramic water filters do have the potential 

to provide microbiologically improved water to users as indicated by a reduction in 



 

 

39

39

surrogates for disease causing microbes.  More work is needed, however, to adequately 

characterize the microbiological effectiveness of these interventions.     

The proper use of drinking water treatment technology is as critical to its 

effectiveness as the technology itself (Draffin 1939).  Limited presence/absence field 

microbiological effectiveness data (24 pre- and post-treatment samples) reported by 

Lantagne (2001b) indicated that field effectiveness against total coliforms, H2S-

producing bacteria, and E. coli was substantially less than in lab studies summarized 

earlier (Lantagne 2001a).  A lower observed effectiveness under field use conditions has 

been reported elsewhere (Baumgartner 2006; Roberts 2003); lower reductions in the field 

suggest links between environmental factors or user behavior and technology 

effectiveness.  In limited initial studies, Campbell (2005) and Lantagne (2001b) showed 

that filters can maintain effectiveness in field use for a long time (≥5 years); thus proper 

use can potentially ensure sustained access to microbiologically improved drinking 

water. 

 

2.6.4  Health impacts associated with use of low cost ceramic filters 

Some evidence for the intervention's ability to reduce diarrhea in users versus 

non-users exists in non-peer reviewed publications.  Roberts (2003) reported that filter 

users reported approximately half the cases of diarrhea as a control group in a field study 

of approximately 100 households in Cambodia.  In a Guatemalan study of the impacts of 

filter use and maternal health education on diarrheal disease among children under 5 

years, there was a reported 53% reduction in diarrheal incidence due to filters alone, 65% 

reduction for filters used in conjunction with educational program, and 21% reduction for 
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education alone over the two year study (24 follow up visits) including 1120 children in 

three regions (AFA Guatemala 1995).  The filter used in this study was a predecessor of 

the Filtrón promoted by Potters for Peace, developed by ICAITI.   



 

 

41

41

2.7  References 
 
AFA Guatemala.  1995.  Contra la morbilidad infantile: filtros artanisales y educación.  

Revista de Estudios Sociales 53(4).  Universidad Rafael Landivar: Instituto de 
Investigaciones Económicas y Sociales.  Monograph (in Spanish).   

 
Aikhomu, S.E., Brieger, W.R., and Kale, O.O.  2000.  "Acceptance and use of communal 

filtration units in guinea worm eradication".  Tropical Medicine and International 
Health 5(1):47-52. 

 
Anyangwe, S.C., Mtonga, C., and Chirwa, B. 2006.  "Health inequities, environmental 

insecurity and the attainment of the millennium development goals in sub-Saharan 
Africa: the case study of Zambia". International Journal of Environmental 
Research in Public Health  3(3):217-227. 

 
Backer, H. 2002.  "Water disinfection for international and wilderness travelers". Clinical 

Infectious Diseases 34(3): 355–364. 
 
Baide, J.M.C.  2001.  Prueba de la aceptación del filtro de cerámica impregnado con 

plata colloidal en el barrio El Ocotal de Guinope, Honduras.  Zamorano Carrera de 
Desarrollo Socioeconónomica y Ambiente.   

 
Bartram, J. 2003.  "New water forum will repeat old message". Bulletin of the World 

Health Organization; 83(3):158. 
 
Baumgartner, J.  2006.  The effect of user behavior on the performance of two household 

water filtration systems.  Master's thesis: Harvard School of Public Health, 
Department of Population and International Health.   

 
Blatchley, I. E. R. and Peel, M.M.  2001. Disinfection by Ultraviolet Irradiation. 

Disinfection, Sterilization, and Preservation. S. S. Block. New York: Lippincott 
Williams & Wilkins. 

 
Bradley, D. et al.   1977.  “Health aspects of water supplies in developing countries”. In 

Water, Wastes, and Health in Hot Climates.  R. Feachem, M. McGarry, and D. 
Mara (Eds).  London: Wiley.   

 
Brick, T., Primrose, B., Chandrasekhar, R., Roy, S., Muliyil, J., and Kang, G.  2004.  

"Water contamination in urban south India: household storage practices and their 
implications for water safety and enteric infections".  International Journal of 
Hygiene and Environmental  Health 207(5): 473-480. 

 
Brink, A.K., Mahe, C., Watera, C., Lugada, E., Gilks, C., Whitworth, J., French, N. 2002. 

"Diarrhea, CD4 counts and enteric infections in a community-based cohort of 
HIV-infected adults in Uganda". J Infect 45: 99–106. 

 



 

 

42

42

Brown, J.  2003.  Evaluation of point-of-use microfiltration for drinking water treatment 
in rural Bolivia.  MPhil dissertation, Department of Geography, University of 
Cambridge.   

 
Cairncross, S.  1992.  “Control of enteric pathogens in developing countries”. In 

Environmental Microbiology.  R. Mitchell (Ed).  London: Wiley.  
 
Cairncross, S. and Feachem, R.  1993.  Environmental Health Engineering in the Tropics, 

2nd ed.  New York: John Wiley and Sons. 
 
Campbell, E.  2005.  "Study on Life Span of Ceramic Filter Colloidal Silver Pot Shaped 

(CSP) Model".  Internal report to Potters for Peace, available on their website. 
 
CDC (Centers for Disease Control and Prevention). 2003.  Website “Bacterial 

Waterborne Diseases”: 
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/waterbornediseases_t.htm.  

 
Cheesman, S.L.  2003.  "A feasibility study to assess the potential for red clay ceramic 

water filters to be reproduced by skilled artisans and an evaluation of the filters' 
ability to remove protozoa, bateria, and virus pathogens".  Cranfield University 
(Silsoe): Master of Science Thesis. 

 
Clasen, T.F. and Bastable, A. .2003. "Faecal contamination of drinking water during 

collection and household storage: the need to extend protection to the point of 
use". Journal of Water and Health 1(3), 109-115. 

 
Clasen, T. and Cairncross, S.  2004.  "Household water management: refining the 

dominant paradigm".  Tropical Medicine and International Health 9(2): 187-191.   
 
Clasen, T., Brown, J., Collin, S., Suntura, O., and Cairncross, S. 2004. "Reducing 

diarrhea through the use of household-based ceramic water filters: a randomized, 
controlled trial in rural Bolivia". American Journal of Tropical Medicine and 
Hygiene 70(6): 651-657. 

 
Clasen, T., Roberts I., Rabie, T., Schmidt, W., and Cairncross, S. 2006a.  "Interventions 

to improve water quality for preventing diarrhoea". Cochrane Database of 
Systematic Reviews (3). Art. No.: CD004794. DOI: 
10.1002/14651858.CD004794.pub2. 

 
Clasen, T. and Boisson, S.  2006b.  "Household-based ceramic water filters for the 

treatment of drinking water in disaster response: an assessment of a pilot 
programme in the Dominican Republic".  Water Practice and Technology 1(2): 1-
9. 

 



 

 

43

43

Clasen, T., Schmidt, W.P., Rabie, T., Roberts, I., and Cairncross, S.  2007.  Interventions 
to improve water quality for preventing diarrhoea: systematic review and meta-
analysis. British Medical Journal 334(7597):755-756. 

 
Colebunders, R., Francis, H., Mann, J.M., Bila, K.M., Izaley, L., Kimputu, L., Behets, F., 

van der Groen, G., Quinn, T.C., Curran, J.W. 1987. "Persistent diarrhea, strongly 
associated with HIV infection in Kinshasa, Zaire". American Journal of 
Gastroenterology 82: 859–864. 
 

Colwell, R.R., Huo, A., Islam, M.S., Aziz, K.M.A., Yunus, M., Khan, N.H., Mahmud, 
A., Sack, R.B., Nair, G.B., Chakraborty, J., Sack, D.A., Russek-Cohen, E. 2003. 
"Reduction of cholera in Bangladeshi villages by simple filtration". Proceedings 
of the National Academy of Science 100(3): 1051-5. 

 
Conroy, R., Meegan, M., Joyce, T., McGuigan, K., and Barnes, J. 2001. "Solar 

disinfection of drinking water protects against cholera in children under 6 years of 
age". Archives of Disease in Childhood 85(4): 293-295. 

 
Curtis, V., Cairncross, S., and Yonli, R.  2000.  “Domestic hygiene and diarrhoea - 

pinpointing the problem”.  Tropical Medicine and International Health 5(1): 22-
32. 

 
Curtis, V. and Cairncross, S.  2003.  "Effect of washing hands with soap on diarrhea risk 
in the community: a systematic review".  Lancet Infectious Diseases 3: 275-281. 
 
Dies, R.  2003.  “Development of a ceramic water filter for Nepal”.  Master of 

Engineering thesis: the Massachusetts Institute of Technology, Department of 
Civil and Environmental Engineering.   

 
Doocy, S. and Burnham, G. 2006.   "Point-of-use water treatment and diarrhoea reduction 

in the emergency context: an effectiveness trial in Liberia". Tropical Medicine 
and International Health 11(10):1542-1552. 

 
Draffin, J.O.  1939.  The Story of Man's Quest for Water.  Champaign, Illinois: The 

Garrard Press. 
 
Duke, W.F., Nordin, R.N., Baker, D.  and Mazumder, A.  2006a. "The use and 

performance of Biosand filters in the Artibonite Valley of Haiti: a field study of 
107 households". Rural Remote Health 6(3):570. 

 
Duke, W.F., Nordin, R., and Mazumder, A.  2006b.  Comparative Analysis of the Filtrón 

and Biosand Water Filters.  Monograph available from 
http://www.pottersforpeace.org.   

 



 

 

44

44

Esrey, S.A., Feachem, R.G., and Hughes, J.M. 1985.  "Interventions for the control of 
diarrheal diseases among young children: improving water supplies and excreta 
disposal facilities". Bulletin of the World Health Organization  63: 757–72. 

 
Esrey, S.A. and Habicht, J.P. 1986.  "Epidemiologic evidence for health benefits from 

improved water and sanitation in developing countries". Epidemiologic Reviews 
8:117-128. 

 
Esrey, S.A., Habicht, J.P., Latham, M.C., Sisser, D.G., and Casella, G.  1988. "Drinking 

water source, diarrhoeal morbidity, and child growth in villages with both 
traditional and improved water supplies in rural Lesotho, Southern Africa".  
American Journal of Public Health 78(11): 1451-1455.   

 
Esrey, S.A., Potash, J.B., Roberts, L., and Shiff, C.  1991.  "Effects of improved water 

supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm 
infection, schistosomiasis, and trachoma".  Bulletin of the World Health 
Organization 69(5):609-621.   

 
Fewtrell, L., Kaufmann, R.B., Kay, D., Enanoria, W., Haller, L., and Colford, J.M.  2005.  

"Water, sanitation, and hygiene interventions to reduce diarrhea in less developed 
countries: a systematic review and meta-analysis".  Lancet Infectious Diseases 5: 
42-52.   

 
Gadewar, S. and Fasano, A.  2005. "Current concepts in the evaluation, diagnosis and 
management of acute infectious diarrhea".  Curr Opin Pharmacol. 2005 5(6):559-565. 
 
García Márquez, G.  1999.  Love in the time of Cholera.  New York: Penguin Books.   
 
Gleeson, C. and Gray, N.  1997.  The Coliform Index and Waterborne Disease.  London: 

E & FN Spon.   
 
Gleick, P.  1998.  “The human right to water”.  Water Policy 1: 487-503.   
 
Grant, A.D., Djomand, G., De Cock, K.M. 1997. "Natural history and spectrum of 

disease in adults with HIV/AIDS in Africa". AIDS 11(Suppl B): S43–S54. 
 
Hayes, C., Elliot, E., Krales, E., Downer, G. 2003.  "Food and water safety for persons 

infected with human immunodeciency virus". Clinical Infectious Diseases 36 
Suppl 2:106-109. 

 
Hijnen, W.A.M., J.F. Schijven, P. Bonné, A. Visser and G.J. Medema.  2004.  

"Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration".  
Water Science and Technology 50(1): 147–154.    

 
Hörman, A., Rimhanen-Finne, R., Maunula, L., von Bonsdorff, C.H., Rapala, J., Lahti, 

K., and Hänninen, M.L. 2004.  Evaluation of the purification capacity of nine 



 

 

45

45

portable, small-scale water purification devices. Water Science and Technology 
50(1): 179-83. 

 
Huo, A., Xu, B., Chowdhury, M.A., Islam, M.S., Montilla, R., and Colwell, R.R. 1996.  

"A simple filtration method to remove plankton-associated Vibrio cholerae in raw 
water supplies in developing countries". Applied and Environmental 
Microbiology 62(7):2508-2512. 

 
Hygiene Improvement Project (HIP). 2006.  Summary of Household Water Treatment 

and Storage E-Conference Proceedings. Washington DC: HIP. 
 
IRC (International Water and Sanitation Centre, Delft). 2005. Household water treatment 

FAQs. Delft: IRC.  
 
Jensen, P., Ensink, J., Jayasinghe, G., van der Hoek, W., Cairncross, S., and Dalsgaard, 

A.  2002.  "Domestic transmission routes of pathogens: the problem of in-house 
contamination of drinking water during storage in developing countries".  
Tropical Medicine and International Health 7(7): 604-609. 

 
Jensen, P.K., Jayasinghe, G., van der Hoek, W., Cairncross, S., Dalsgaard, A.  2004. "Is 

there an association between bacteriological drinking water quality and childhood 
diarrhoea in developing countries?"  Tropical Medicine and International Health 
9(11):1210-1215.   

 
Kaplan, J.E., Hu, D.J., Holmes, K.K., Jaffe, H.W., Masur, H., De Cock, K.M. 1996. 

"Preventing opportunistic infections in human immunodeficiency virus-infected 
persons: implications for the developing world". Am J Trop Med Hyg 55: 1–11. 

 
Lantagne, D. 2001a. “Investigation of the Potters for Peace Colloidal Silver Impregnated 

Ceramic Filter – Report 1: Intrinsic Effectiveness”. Alethia Environmental. 
Allston, MA.  

 
Lantagne, D. 2001b. “Investigation of the Potters for Peace Colloidal Silver Impregnated 

Ceramic Filter – Report 2: Field Investigations”. Alethia Environmental. Allston, 
MA. 

 
Lantagne, D., Quick, R., and Mintz, E. 2006. "Household water treatment and safe 

storage options in developing countries: a review of current implementation 
practices". Washington DC: Woodrow Wilson International Center.  

 
Lantagne, D.  2007.  Personal communication, 20 April 2007. 
 
Luby, S.P., Syed, A.H., Atiullah, N., Faizan, M.K., and Fisher-Hoch, S.  2000.  "Limited 

effectiveness of home drinking water purification efforts in Karachi, Pakistan".   
International Journal of Infectious Diseases 4(1):3-7 

 



 

 

46

46

Lule, J.R., Mermin, J., Ekwaru, J.P., Malamba, S., Downing, R., Ransom, R., Nakanjako, 
D., Wafula, W., Hughes, P., Bunnell, R., Kaharuza, F., Coutinho, A., Kigozi, A., 
and Quick, R. 2005.  "Effect of home-based water chlorination and safe storage 
on diarrhea among persons with human immunodeficiency virus in Uganda."  
American Journal of Tropical Medicine and Hygiene 73(5):926-933. 

 
Lykins, B.W., Goodrich, J.A., Clark, R.M., and Harrison, J.  1994.  "Point-of-use/point-

of-entry drinking water".  Water Supply 12(1-2): SS41-SS45. 
 
Mackenbach, J.P. 2007.  "Sanitation: pragmatism works". British Medical Journal 

334(7583): 17. 
 
Macy, J. and Quick, R.  2002.  “World spotlight: the Safe Water System - a household-

based water quality intervention program for the developing world”.  Water 
Conditioning and Purification Magazine  44(4). 

 
Mattelet, C.  2006.  Household Ceramic Water Filter Evaluation Using Three Simple 

Low-Cost Methods: Membrane Filtration, 3M Petrifilm, and Hydrogen Sulfide 
Bacteria in Northern Region, Ghana.  MIT Master's Thesis: Department of Civil 
and Environmental Engineering.   

 
Merriman, M.  1906.  Elements of Sanitary Engineering, 3rd Ed.  New York: John Wiley 

and Sons.   
 
Mintz, E.D., Reiff, F.M., and Tauxe, R.V.  1995.  "Safe water treatment and storage in 

the home".  Journal of the American Medical Association  273(12): 948-953. 
 
Mintz, E.D., Bartram, J., Lochery, P., and Wegelin, M.  2001. "Not just a drop in the 

bucket: expanding access to point-of-use water treatment systems". American 
Journal of Public Health  91(10): 1565-1570. 

 
Moe, C.L., Sobsey, M.D., Samsa, G.P., and Mesolo, V.  1991.  "Bacterial indicators of 

risk of diarrheal disease from drinking-water in the Philippines".  Bulletin of the 
World Health Organization 69(3): 305-317.   

 
Momba, M.N.B. and Kaleni, P.  2002.  "Regrowth and survival of indicator 

microorganisms on the surfaces of household containers used for the storage of 
drinking water in rural communities of South Africa".  Water Research 36: 3023-
3028.   

 
Mong, Y., Kaiser, R., Ibrahim, D., Rasoatiana, Razafimbololona, L., and Quick, R.E. 

2001. "Impact of the safe water system on water quality in cyclone-affected 
communities in Madagascar". American Journal of Public Health 91(10): 1577-
1579. 

 



 

 

47

47

Moszynski, P.  2006. "Worldwide water crisis is a 'silent emergency,' UN agency says".  
British Medical Journal 333:986.       

 
Nataro, J.P. 2004.  "Vaccines against diarrheal diseases". Seminars in Pediatric Infectious  

Diseases 215(4):272-279. 
 
NSF (National Sanitation Foundation, now NSF-International).  2003.  NSF P231- 

Microbiological Water Purifiers.   Ann Arbor, USA: NSF International.  
Available online at http://www.nsf.org. 

 
Olsen, A., Magnussen, P., and Anemana, S. 1997.  "The acceptability and effectiveness 

of a polyester drinking-water filter in a dracunculiasis-endemic village in northern 
region, Ghana". Bulletin of the World Health Organization 75(5):449-452. 

 
Payment, P., Franco, E., Richardson, L., and Siemiatycki, J. 1991. "Gastrointestinal 

health effects associated with the consumption of drinking water produced by 
point-of-use domestic reverse-osmosis filtration units". Applied and 
Environmental Microbiology 57(4): 945-948. 

 
POST (Parliamentary Office of Science and Technology). 2002.  "Access to Water in 

Developing Countries".  Postnote no. 178.  London: The Parliamentary Office of 
Science and Technology.  Briefing available online at 
http://www.parliament.uk/post/home.htm.   

 
Prüss, A., Kay, D., Fewtrell, L., and Bartram, J. 2002.  "Estimating the burden of disease 

from water, sanitation, and hygiene at a global level". Environmental Health 
Perspectives 110(5):537-542. 

 
Prüss-Üstün, A., Kay,D., Fewtrell, L. and Bartram, J.  2004.  "Unsafe water, sanitation 

and hygiene".  In Comparative Quantification of Health Risks: The Global and 
Regional Burden of Disease Attributable to Selected Major Risk Factors 
(Volumes 1 and 2).  Ezzati, M. et al.  (Eds).  Geneva: World Health Organization.  
Available online at http://www.who.int.       

 
Reller, M.E., Mong, Y., Hoekstra, R., Quick, R.  2001. "Cholera prevention with 

traditional and novel water treatment methods: an outbreak investigation in Fort-
Dauphin, Madagascar". American Journal of  Public Health 91: 1608-1610. 

 
Rivera, R.  2007.  Personal communication, 31 May 2007.   
 
Roberts, L., Chartier, Y., Chartier, O., Malenga, G., Toole, M., and Rodka, H.  2001. 

"Keeping clean water clean in a Malawi refugee camp: a randomized intervention 
trial". Bulletin of the World Health Organization 79(4):280-287. 

 
Roberts, M.  2004.  "Field test of a silver-impregnated ceramic filter".  Proceedings of the 

30th WEDC International Conference, Vientiane, Lao PDR, 2004. 



 

 

48

48

 
Sattar, S.A., Tetro, J., and Springthorpe, V.S. 1999. "Impact of changing societal trends 

on the spread of infections in American and Canadian homes". American Journal 
of Infection Control 27: S4-S21. 

 
Schiller, L. R.  2002.  "Diarrheal diseases: definition and epidemiology".  ACP Medicine 

Online.   
 
Schumacher, E.F.  1973.  Small is Beautiful: Economics as if People Mattered.  London: 

Blond and Briggs.   
 
Short, C. 2002. "Water-a key to sustainable development: A speech by Clare Short, 

Secretary of State for International Development, at the Royal Geographical 
Society".  London: Department for International Development (DfID), 31 October 
2002.  Transcript available online at http://www.dfid.gov.uk.   

 
Snow, J. 1855.  On the Mode of Communication of Cholera, 2nd ed. London: John 

Churchill. 
 
Sobsey, M.D.  2002.  Managing Water in the Home: Accelerated Health Gains from 

Improved Water Supply.  Geneva: World Health Organization.  Available at 
http://www.who.int 

 
Sobsey, M.D., Handzel, T., and Venczel, L. 2003. "Chlorination and safe storage of 

household drinking water in developing countries to reduce waterborne disease". 
Water Science and Technology 47(3), 221-228. 

 
Sobsey, M.  2006.  "Drinking water and health research: a look to the future in the United 

States and globally".  Journal of Water and Health 04: Supplement 17-21.   
 
Souter, P.F., Cruickshank, G.D., Tankerville, M.Z., Keswick, B.H., Ellis, B.D., 

Langworthy, D.E., Metz, K.A., Appleby, M.R., Hamilton, N., Jones, A.L., and 
Perry, J.D.  2003.  "Evaluation of a new water treatment for point-of-use 
household applications to remove microorganisms and arsenic from drinking 
water". Journal of Water and Health 1: 73-84. 

 
Stauber, C.E., Elliott, M.A., Koksal, F., Ortiz, G.M., DiGiano, F.A., and Sobsey, M.D. 

2006. "Characterisation of the biosand filter for E. coli reductions from household 
drinking water under controlled laboratory and field use conditions". Water 
Science and Technology 54(3): pp. 1-7. 

 
Storeygard, A.  2002.  “Water, sanitation and health in Dar es Salaam, Tanzania”.  

Environment and Development MPhil Dissertation, University of Cambridge, 
Department of Geography. 

 



 

 

49

49

Sur, D. and Bhattacharya, S.K.  2006. "Acute diarrhoeal diseases--an approach to 
management."  Journal of the Indian Medical Association 104(5):220-223.  

 
Swerdlow, D. L., E. D. Mintz, et al.  1992. "Waterborne transmission of epidemic cholera 

in Trujillo, Peru: lessons for a continent at risk". Lancet 340: 28-33. 
 
Thapar, N. and Sanderson, I.R.  2004. "Diarrhoea in children: an interface between 

developing and developed countries".  Lancet 363:641-653. 
 
Timms, S., Slade, J.S., and Fricker, C.R.  1995.  "Removal of cryptosporidium by slow 

sand filtration".  Water Science and Technology 31(5-6): 81-84.  
 
Tumwine, J.K., Thompson, J., Katua-Katua, M., Mujwajuzi, M., Johnstone, N., and 

Porras, I.  2002.  "Diarrhoea and effects of different water sources, sanitation and 
hygiene behaviour in East Africa".  Tropical Medicine and International Health  
7(9): 750-756.   

 
Tumwine, J.K.  2002.  Drawers of Water II: Thirty Years of Change in Domestic Water 

Use and Environmental Health in East Africa.  London: International Institute for 
Environment and Development. 

 
UN (United Nations).  1992.  Agenda 21, Ch 18.5d. 
 
UN (United Nations). 2002.  United Nations Report of the World Summit on Sustainable 

Development Johannesburg, South Africa, 26 August- 4 September 2002: 
A/CONF.199/20 

 
UN (United Nations).  2005.  Health, Dignity, and Development: What Will it Take?  

Millennium Project Task Force on Water and Sanitation final report.  London: 
Earthscan.   

 
USEPA (Environmental Protection Agency).  1987.  Guide Standard and Protocol for 

Testing Microbiological Water Purifiers.  Office of Drinking Water. 
 
Van Halem, D.  2006.  Ceramic silver impregnated pot filters for household drinking 

water treatment in developing countries.  Master's Thesis, Faculty of Civil 
Engineering.  Delft University of Technology, Netherlands.   

  
Wagner, E.G. and Lanoix, J.N. 1958. “Excreta disposal for rural areas and small 

communities”.  Geneva: WHO Monograph series No 39. 
 
Warwick, T.P.  2002.  “Does point-of-use for the developing world really work?”.  Water 

Conditioning and Purification  44(9): 66-69. 
 



 

 

50

50

Weber, J. T., Mintz, E.D. et al.  1994. "Epidemic cholera in Ecuador: multidrug-
resistance and transmission by water and seafood". Epidemiology and Infection 
112: 1-11. 

 
WHO (World Health Organization).  2003.  Right to Water.  Geneva: World Health 

Organization.  Available online at 
http://www.who.int/water_sanitation_health/rightowater/en/ 

 
WHO (World Health Organization).  2004.  World Health Report 2004.  Geneva: World 

Health Organization.  Available online at http://www.who.int.    
 
WHO (World Health Organization) and UNICEF (United Nations Children's Fund).  

2005.  Joint Monitoring Programme Report.  Available at http://www.unicef.org. 
 
WHO (World Health Organization).  2006.  WHO Guidelines for Drinking Water 

Quality, 3rd edition.  Geneva: World Health Organization.  Available online at 
http://www.who.int.      

 
WHO (World Health Organization).  2005. Household water treatment and safe storage 

following emergencies and disasters. Geneva: World Health Organization. 
 
WQHC (Water Quality and Health Council). 2003.  Spring newsletter 2003, available 

online at 
http://www.waterandhealth.org/newsletter/new/spring_2003/water_treat.html.   

 
Wright, J., Gundry, S., and Conroy, R.  2004.  "Household drinking water in developing 

countries: a systematic review of microbiological contamination between source 
and point-of-use".  Tropical Medicine and International Health 9(1): 106-117.   

 
Young, B.A. and Briscoe, J.  1988.  “A case-control study of the effect of environmental 

sanitation on diarrhoeal morbidity in Malawi”.  Journal of Epidemiology and 
Community Health  42: 83-88. 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
CHAPTER 3:  LABORATORY AND FIELD EFFECTIVENESS OF LOW-COST 
CERAMIC FILTERS FOR DRINKING WATER TREATMENT IN CAMBODIA 
 
 
Abstract 

Waterborne pathogens contribute to the global burden of human disease and 

drinking water quality is a major determinant of diarrheal disease burdens.  Low-cost 

options for the treatment of drinking water at the household level are being explored by 

the Cambodian government and NGOs working in Cambodia, where 66% of the 

population lack access to improved drinking water sources and diarrheal diseases are the 

most prevalent cause of death in children under 5 years of age.  The ceramic water 

purifier (CWP), a locally produced low-cost ceramic filter, is now being implemented by 

several NGOs and an estimated 100,000 people in the country now use them for drinking 

water treatment at the household level. This study presents results from laboratory and 

field-based testing of these CWPs for their ability to reduce coliphages and bacteria in 

drinking water sources in Cambodia. The effectiveness of three candidate filters were 

tested extensively in the laboratory for the reduction of bacterial and viral surrogates for 

waterborne pathogens using representative drinking water sources (rain water and surface 

water) spiked with test microbes.  Filters were tested over a greater than 600 l total 

throughput.  Two filters were then evaluated for field effectiveness in reducing microbes 

in household water in Prek Thmey, a rural/peri-urban village in Cambodia, over 18 weeks 

of use.  Results indicate that filters are capable of reducing key microbes in the laboratory 
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and in field use conditions, with mean reductions of E. coli of approximately 99% and 

mean reduction of bacteriophages of 90-99%.        

 

3.1  Introduction 

The evidence base for microbiological effectiveness of the ceramic water filters in 

the laboratory and in field use remains limited, especially in the peer reviewed scientific 

literature.  However, Roberts (2004), Lantagne (2001a), Duke et al.  (2006), Val Halem 

(2006), Baide (2001), AFA Guatemala (1995), Mattelet (2006) and others have reported 

results that suggest low-cost, pot-style ceramic water filters do have the potential to 

provide microbiologically improved water to users as indicated by a reduction in 

indicators of fecal indicator or pathogenic microbes (Table 3.1).  As summarized in Table 

3.1, low cost ceramic filters have been shown to reduce bacteria by at least 3 log10 and 

protozoan parasites by at least 4 log10. However, viruses have been reduced typically by 

less than 1 log10.  These results are consistent with the expected pore size of the filters 

being in the microporous range and therefore able to appreciably retain bacteria and 

protozoa but too large to retain viruses. 

Previous studies (Clasen et al.  2004; Clasen et al.  2006) have shown candle-type 

ceramic filters made in richer countries to be effective against indicator bacteria in field 

trials.  Studies to date have been limited on performance evidence for viruses in 

particular.  However, in epidemiological studies, Almeida et al.  (2001) found a potential 

negative association between Hepatitis A incidence and the presence of a household 

ceramic water filter in a study from urban poor section of Rio de Janiero, Brazil. 
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Therefore, it may be possible that some reduction of viruses is achievable with currently 

available point-of-use (POU) ceramic filters, although more testing is needed.   

The proper use of drinking water treatment technology is as critical to its 

effectiveness as the technology itself (Draffin 1939).  Limited presence/absence data on 

field microbiological effectiveness (24 pre- and post-treatment samples) reported by 

Lantagne (2001b) indicated that field effectiveness against total coliforms, H2S-

producing bacteria, and E. coli was substantially less than in lab studies summarized 

earlier (Lantagne 2001a).  A lower observed effectiveness under field use conditions has 

been reported elsewhere (Baumgartner 2006; Roberts 2004).  Lower reductions in the 

field suggest links between environmental factors or user behavior and technology 

effectiveness.  In limited initial studies, however, Campbell (2005) and Lantagne (2001b) 

showed that filters can maintain effectiveness in field use for a long time (≥5 years). 

Hence, proper use can potentially ensure sustained access to microbiologically improved 

drinking water. 
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Microbe na Vb Untreatedc Filtrated LRVe Waterf Filterg Reference 

6 36 6.9 1.9 5.0 Canal waterh CWP (Cambodia) Van Halem (2006) 
6 36 6.9 0.48 6.4 Canal water C.T. Filtron (Ghana) Van Halem (2006) 
6 36 6.9 0 6.8 Canal water Filtrón (Nicaragua) Van Halem (2006) 

E. coli K12 

6 36 6.9 3.9 3.0 Canal water Filtrón  (Nicaragua), no Ag Van Halem (2006) 
12 72 4.8 1.0 3.8 Canal water CWP (Cambodia) Van Halem (2006) 
12 72 4.8 0.95 3.8 Canal water C.T. Filtron (Ghana) Van Halem (2006) 
12 72 4.8 0 4.9 Canal water Filtrón (Nicaragua) Van Halem (2006) 

Sulfite 
reducing 
clostridia 

12 72 4.8 1.5 3.3 Canal water Filtrón  (Nicaragua), no Ag Van Halem (2006) 
2 <10? 3.7 3.4 0.3 ? Filtrón (Nicaragua) Lantagne (2001a) 
6 <10? 5.6 4.7 0.9 ? CWP (Cambodia) Van Halem (2006) 
6 36 5.6 4.7 0.9 Canal water CWP (Cambodia) Van Halem (2006) 
6 36 5.6 4.9 0.7 Canal water C.T. Filtron (Ghana) Van Halem (2006) 
6 36 5.6 5.1 0.6 Canal water Filtrón (Nicaragua) Van Halem (2006) 

MS2 

6 36 5.6 4.4 1.2 Canal water Filtrón (Nicaragua), no Ag Van Halem (2006) 
C. parvum 1 7 5.5 1.2 4.3 Reagenti 

grade 
Filtrón (Nicaragua) Lantagne (2001a) 

G. intestinalis 1 7 5.4 0.85 4.6 Reagent grade Filtrón (Nicaragua) Lantagne (2001a) 
a.  Number of sample sets  
b.  Total spiked throughput (l) sampled  
c.  Concentration (arithmetic mean) per 100 ml sample, log10 units 
d.  Concentration (arithmetic mean) per 100 ml sample, log10 units 
e.  Arithmetic mean log reduction value (LRV) = log10 (untreated / filtrate).   
f.   Challenge water (water to which microbes were spiked) 
g.  Filter and location of manufacture; all are treated with some type of silver solution except where indicated.   
h.  Spiked canal water from the Netherlands.   
i.  Disinfected, dechlorinated water. 

Table 3.1.  Lab-based effectiveness testing for low-cost ceramic pot-style filters: summary of evidence to date.     
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3.2  Purpose and objectives 

The purpose of this study was to evaluate the performance of three candidate 

porous ceramic water filters against bacterial and viral pathogen surrogates.  The ceramic 

water purifier as produced by the NGO Resource Development International in 

Cambodia (the CWP1) was compared to a version of the filter modified with FeOOH (the 

CWP2) and a version without treatment by AgNO3 (the CWP3).  Both the CWP1 and 

CWP2 were treated with an aqueous solution of AgNO3.   

 

The specific objectives of this study were to: 

• examine the effectiveness of the three filters against E. coli in the laboratory and 

in the field under a range of conditions;  

• compare performance data from laboratory experiments with microbiological 

effectiveness data from filters in use in the field;  

• compare the effectiveness of the filters against E. coli to currently used methods 

for water treatment (boiling) in the field;  

• examine the effectiveness of the three filters against MS2, a viral surrogate, in the 

laboratory;  

• collect enough data to reflect the variability of performance of the filters over 

extended use periods, and if possible, to identify associations between 

performance and factors like water characteristics;  

• and evaluate the effects, if any, of AgNO3 and FeOOH amendments to the 

performance of the CWP technology.       
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3.3  Methods and materials 

Microbiological effectiveness testing of candidate filters proceeded in two parts, 

which are outlined in the following sections: 

 

(i).  Laboratory testing.  Three different CWP type filters were subjected to extended 

laboratory testing in Cambodia for the reduction of bacterial and viral pathogen 

surrogates (E. coli and MS2) in spiked rain water and surface water.   

 

(ii).  Field testing.  Two different CWP type filters were selected for field testing in 

household use over time (18 weeks) in a rural/peri-urban village.  Reduction of the 

bacterial indicator E. coli was the key microbiological performance outcome measured.     

 

3.3.1  Laboratory testing 

Laboratory testing of three candidate low-cost, pot-style ceramic drinking water 

filters in Kandal province, Cambodia, was performed.  Methods for laboratory testing of 

filters were intended to approximate use conditions in households in Cambodia.    

Challenge waters were rain water and surface waters that were in use as drinking water 

sources in the village of Prek Thom, Kandal province.  Waters were collected and spiked 

with bacterial and viral pathogen surrogates, E. coli CN13 and bacteriophage MS2, 

respectively.  Filters were tested over a greater than 600 l throughput to address 

variability in performance under challenge conditions.  Filters were cleaned once per 

week during testing according to the manufacturers instructions. 
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3.3.1.1  Filters 

 The ceramic water purifier manufactured by RDI (CWP1) is a porous ceramic 

pot-style filter based on the ICAITI model promoted by Potters for Peace.   The filters 

have been made in Kandal Province at a central factory since 2002.  Raw clay is milled 

and mixed with ground rice husks, press molded, and fired to cone 012 (~870oC) in a kiln 

using scrap wood pieces as fuel.  After flow testing (a QA/QC step) to ensure that the 

flow rate is in the proper range to indicate target pore size and structure (1-3 l/hr), the 

porous filters are painted with a 0.00215 molar reagent-grade (99.999%) AgNO3 solution 

intended to inhibit microbial growth on the filter.  Approximately 300 ml are applied to 

each filter: 200 ml on the inside (46 mg Ag) and 100 ml on the outside of the filter 

element (23 mg Ag).   

The CWP2 is a modified version of the RDI (CWP1) filter that contains a higher 

percentage of iron oxide-rich clay, based on prototype testing suggesting greater 

effectiveness of these filters against small, non-enveloped viruses (geometric mean virus 

reduction >4 log10 or 99.99%) in initial testing on limited volumes of spiked challenge 

waters (data not shown).  Other details of manufacture are identical to the standard filter.  

The CWP2 is also painted with a silver nitrate (AgNO3) solution.   

The CWP3 is a variation of the RDI filter that does not employ silver or iron 

oxide amendments, but is the same in other respects.  These filters are essentially the 

CWP1 without the application of silver nitrate.       
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3.3.1.2  Choice of test microbes 

The non-pathogenic test microbes, E. coli CN13 (ATCC 700609) and 

bacteriophage MS2 (ATCC 15597-B1), were used as surrogates for bacterial and viral 

pathogens potentially present in drinking water sources, respectively.  Escherichia coli is 

a gram negative, rod-shaped bacterium originating in the gut of warm blooded animals; 

cells are elongated, 1–2 µm in length and 0.1–0.5 µm in diameter.  The well-

characterized, non-pathogenic strain used was chosen due to its relative ease of 

production in the laboratory and its resistance to the antibiotic nalidixic acid, used to 

select for the bacterium in culture while excluding most other bacteria that might be 

present as interfering contaminants.  Its size and morphology is characteristic of other 

pathogenic bacteria of concern in drinking water, such as pathogenic strains of E. coli, 

Salmonella spp., Shigella spp., Campylobacter spp. and Vibrio spp.. Hence, E. coli CN13 

was chosen as a model for the reduction of bacterial pathogens in water through the 

primarily physical separation process of ceramic filtration.  E. coli CN13 is also not 

infected by MS2 bacteriophage, making it suitable for concurrent use in filter testing with 

that virus as a test microbe in the same challenge water.      

 Bacteriophages like MS2 are useful surrogates for  modeling the behavior of 

enteric viruses in water treatment processes (Grabow 2001) and have been used to model 

virus retention in other filtration processes (e.g., van Voorthuizen et al.  2001; Sobsey et 

al. , 1995a).  MS2, a male-specific (F+), single stranded non-enveloped coliphage, is an 

appropriate surrogate for human enteric viruses, due to its similarity to poliovirus and 

hepatitis A virus in size (diameter = 24-25 nm), shape (icosahedral), and nucleic acid 

(RNA) (EPA 2003, 5-21; Dowd et al.  1998; Hassanizadeh and Schijven 2000).  It is also 
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useful in laboratory applications due to its ease of production, recovery, and enumeration; 

its nonpathogenic nature; and the ease of attaining high titers (Abbaszadegan et al.  

1997).  MS2 and other F+RNA viruses have been shown to be conservative estimators of 

sorption mechanisms when compared with mammalian viruses (Meschke 2001; Sobsey et 

al.  1995a; Bradford et al.  1993).  Thus, it has been shown to be a conservative estimator 

of virus reduction performance in a wide range of treatment processes, including slow 

sand filtration (Schijven et al.  2003; Schijven et al.  2002; Schijven et al.  1999; 

Kinoshita et al.  1993; Powelson et al.  1990); bench scale modeling of drinking water 

treatment processes such as flocculation, coagulation, and sedimentation; rapid sand 

filtration; chlorine disinfection (Sobsey et al.  1995b); and UV disinfection (Tree et al.  

2005; Jevons 1982; Wolfe 1990; Wilson 1992).   

 

3.3.1.3  Overview of laboratory challenge testing  

Filters were challenged with test waters A and B (Table 3.2), as representative of 

drinking water sources in Cambodia.  Challenge water A was a relatively high quality 

water, with low turbidity and organic matter and low levels of E. coli.  Challenge water B 

was of moderate quality, with a mean turbidity of 8.4, organic matter content as UV 

absorbance at 254 nm of 0.05, and a mean E. coli concentration of 145 colony forming 

units (cfu) per 100 ml.  Each testing day water was collected from a rain water catchment 

system and a surface water used for irrigation and household use.  Each water was spiked 

with either E. coli CN13 or MS2 or both and mixed for one minute.  Then each filter was 

filled to the rim with spiked challenge water, approximately 10 l.  Four to five hours later, 

filtrate (approximately 8 l) from each filter was collected, mixed manually with a sterile 
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stirrer, and samples were taken of the post-treatment water for assay.  Flow rates were 

approximately 2 l per hour when filters were full (10 l), decreasing with declining head.  

Total filter throughput per sampling day was approximately 10 l.   Pre-treatment (spiked) 

water was placed alongside the filter unit in a separate closed container for the duration 

of the test, with both pre- and post-treatment water samples taken for analysis at time = 4 

- 5 hr.  Filter receptacles were completely drained but not disinfected between sampling 

days.  Filters were cleaned once per week using methods recommended by RDI.  During 

cleaning the filter and receptacle were scrubbed lightly with a brush, washed using boiled 

water, and reassembled for use.  Methods for testing the filter in the laboratory were 

intended to replicate household use conditions.  An exception to this would be the 

volume filtered per day, which in household use would usually be more than 10 l (up to 

30 l).   

 
Parameter  Challenge water A: stored 

rain watera (mean, range) 
Challenge water B: surface 

waterb (mean, range) 
pH  
 

7.0 (6.8 – 7.5) 7.8 (7.0 – 8.3) 

Turbidity (NTU) 
 

1.1 (<0.05 – 8.1) 8.4 (0.63 – 21) 

E. coli / 100 ml before 
spike 
 

<1 (<1 – 9.8) 145 (<1 – 540) 

Temperature (oC) 
 

29 (22 – 34) 30 (24 – 34) 

UV absorbance at 254 
nm 

0.01 (<0.001 – 0.03) 0.05 (0.01 – 0.08) 

a.  12.3% of total households and 13.6% of rural households use rain water as a 
primary drinking water source, according to national data (NIS 2004). 
b.  18.6% of total households and 21% of rural households use surface water as a 
primary drinking water source, according to national data (NIS 2004).  Most of the 
remainder use dug wells as a source of drinking water.  Access to well water is highly 
variable, however, and increasingly suspect as a source of drinking water in some areas 
due to arsenic contamination (Feldman et al.  2007).   

Table 3.2.  Laboratory challenge water characteristics.   
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3.3.1.4  Microbiological methods:  

3.3.1.4.1  Production method for bacterial stocks 

Escherichia coli CN13 (ATCC 700609) was used as the test microbe in laboratory 

bacterial challenge tests of filters.   Bacteria were inoculated in tryptic soy broth (TSB) 

medium (Difco™) and incubated overnight (16 hours) at 37oC.  The TSB medium was 3 

g tryptic soy broth per 100 ml reagent water, sterilized, and allowed to cool to 30o C.  

Because E. coli CN13 is resistant to the antibiotic nalidixic acid, TSB for growing stocks 

was supplemented with 1% nalidixic acid (1g of nalidixic acid sodium salt dissolved in 

100 ml reagent water, filter sterilized via a 0.22 µm pore size membrane filter assembly) 

at 0.1 ml nalidixic acid to 10 ml TSB (final concentration 100 mg/l) (USEPA 2001).  

After overnight incubation, 1 ml of E. coli culture was transferred aseptically to 30 ml of 

fresh TSB medium (with nalidixic acid) in a shaker flask and incubated at 37oC for 3-4 

hours at 37oC, until absorbance was measured to be approximately 1.5 at 520 nm and 

cells were considered to be in stationary phase.  Once cultures had reached the stationary 

growth phase, 20 ml samples were taken and centrifuged at 4800 x g for 20 minutes.  The 

supernatant was discarded and the pellet of E. coli cells was washed 3 times and re-

suspended in 20 ml of deionized (DI) water.  One (1) ml of this mixture was added per 10 

l of each challenge water (CW1 and CW2).  The final concentration of E. coli CN13 was 

104 – 107 cfu/ml in challenge waters.   

Laboratory bacteriophage challenge tests of filters were performed using the 

male-specific coliphage MS2 (ATCC 15597-B1).  Stocks of high titer bacteriophage were 

spiked into each challenge water to influent concentrations of 105 - 108 pfu/ml.  Both the 

influent and effluent were assayed for phages using the double agar layer (DAL) method 
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as originally described by Adams (1959) and more recently standardized by the USEPA 

(2001).   

 

3.3.1.4.2  Production method for virus stocks 

Somatic and male-specific bacteriophages MS2 and φX-174 were propagated to 

obtain high-titer stocks for use in sorption experiments.  Bacteriophages originally 

obtained from laboratory stocks were twice purified on E. coli C3000.  Plaques were 

selected ("picked") from the bacterial lawn and suspended in phosphate-buffered saline 

(PBS).  High titer stocks were produced through confluent lysis on soft agar with PBS-

suspended phages, log-phase host (E. coli F-amp) and appropriate antibiotics and 

incubated at 37oC for 24 hours.  The lysate-agar mixture was subjected to chloroform 

extraction.  Chloroform was added to the mixture in a 1:1 volume:volume ratio in 50 ml 

polypropylene centrifuge tubes, shaken vigorously by hand for three minutes, and 

centrifuged for 20 minutes at 4oC at 2500 rcf.  Following centrifugation, the supernatant 

was removed from individual centrifuge tubes and pooled.  Sterile glycerol was added to 

the supernatant in a 1:4 volume:volume ratio.  Finally, the stocks were aliquoted in 1ml 

polypropylene microcentrifuge tubes and stored at -80oC.  Phage stocks were assayed to 

determine titer using plaque assay techniques as described by Adams (1959) and more 

recently standardized by the EPA (USEPA 2001).   

 

3.3.1.4.3  Microbiological analysis: E. coli 

E. coli in samples was enumerated by filtering undiluted and diluted samples 

through 47-mm diameter, 0.45 µm pore size cellulose ester filters in standard, sterile 
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magnetic membrane filter funnels and membranes were incubated on agar or broth 

media-soaked absorbent pads.  Agar and broth media (Rapid HiColiform media, 

HiMedia, M1465/M1453), detected total coliform (TC) bacteria and E. coli by cleavage 

of a chromogenic β-galactoside substrate to detect total coliforms and a fluorogenic β –

glucuronide substrate to detect E. coli, producing distinctive color TC colonies and blue 

fluorescing E. coli colonies under long-wave UV light at 366nm (Manafi and Kneifel 

1989; Manafi et al.  1991; Geissler et al.  2000).  Plates were incubated for 20 – 24 hours 

at 37oC.  These methods conform to EPA Approved Method 1604 (US EPA 2002), 

except HiMedia M1465 and 1453 were substituted for the more costly MI medium used 

in the EPA method.  In preliminary studies in which samples were plated on both media, 

MI and M1465 or M1453, E. coli detection was comparable (data not shown). E. coli 

concentrations were expressed as colony forming units (cfu) per unit volume of water. 

 

3.3.1.4.4  Microbial analysis: MS2 coliphages 

MS2 bacteriophages were enumerated on tryptic soy agars containing appropriate 

antibiotics (streptomycin/ampicillin) using the double agar layer or spot titer pour plate 

plaque techniques (Adams 1959; Grabow and Coubrough 1986; USEPA 2001), with host 

E. coli F-amp (ATCC 700891; Debartolomeis and Cabelli 1991).  Plaques were counted 

and bacteriophage concentrations are expressed as plaque forming units per unit volume 

of water.  The two methods were not significantly different in preliminary comparison 

tests (data not shown), although the spot titer method does not have as low a detection 

limit as the DAL method due to the small volumes assayed (Meschke 2001).  These 

methods are briefly described here.  
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The double agar layer (DAL) method 

The double agar layer method was performed as described in EPA method 1602 

(USEPA 2001).  Samples were serially diluted in phosphate-buffered saline (PBS).    

Bottom agar was prepared as 1.4 – 1.5g Bacto-agar and 3g of tryptic soy broth per 100 ml 

of sterile, reagent-grade water, autoclaved, cooled to 42oC, supplemented with 

streptomycin/ampicillin prepared according to method 1602, and poured into sterile, 

disposable 60mm x 15mm polystyrene or autoclaved glass Petri dishes.   

Top agar was prepared as 0.7 – 0.8g Bacto-agar and 3g of tryptic soy broth per 

100 ml of sterile, reagent-grade water, autoclaved, cooled to 42oC, and supplemented 

with appropriate antibiotics.  A series of 13 mm x 100mm sterile glass test tubes were 

filled with 7 ml of top agar while maintaining constant temperature at 42oC in a water 

bath.  To each tube was added 0.1 ml of log-phase host bacteria and 0.1 ml of sample 

(serial dilutions, vortexed).  The contents of each tube (host, sample, and top agar) were 

poured onto bottom agar 60mm x 15mm polystyrene or glass plates.  Top agar was 

allowed to solidify at room temperature.  All plates were then inverted and incubated at 

37oC for 16-24 hours.  Two or more dilutions and replicates were used, along with 

positive and negative controls.           

 Bacteriophages were enumerated on plates by counting clear zones of lysis 

(plaques) on the bacterial lawn and reported as plaque forming units per 100 ml sample 

(pfu/100 ml).  Bacteriophages were enumerated from plates with most appropriate 

dilutions (those with 20-300 plaques).   
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The spot titer method 

The spot titer method is similar to bacterial spot-plating using a single agar layer 

containing host bacteria and is derived from EPA method 1602 (USEPA 2001).  Tryptic 

soy agar (TSA) was prepared as 0.7 – 0.8g Bacto-agar and 3g of tryptic soy broth per 100 

ml of sterile, reagent-grade water, autoclaved, and cooled to 42oC.  Log-phase phage-

specific E. coli host and appropriate antibiotics were added to nutrient agar at the ratio of 

2ml log-phase host to 50ml agar.  Log-phase host were prepared according to EPA 

method 1602 (USEPA 2001).  Agar aliquots and log-phase E. coli host were poured into 

sterile, disposable 150mm x 15mm polystyrene or autoclaved glass Petri dishes and 

allowed to solidify.  Five to ten replicates of 10 µl volumes of sample dilutions (diluted in 

PBS, vortexed) were spotted onto the agar/host mixture in a grid pattern.  After drying 

plates in the biosafety hood, plates were inverted and incubated for 16-24h at 37oC.  

Plaques were enumerated by counting clear zones of lysis (plaques) within the bacterial 

lawn and reported as plaque forming units per 100 ml sample (pfu/100 ml).    

 

3.3.1.5  Analytical methodology 

Filter influent and effluent were assayed for indicator bacteria and bacteriophages 

by methods 1604 and by methods 1602, respectively (USEPA 2002, 2001) as described.  

Reduction efficiency of microbes by filters was calculated and reported in log10 units 

according to:   

 

Log10 reduction value (LRV) = log10 (pre-treatment concentration) – log10 (post-treatment 

concentration) 
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Log10 reductions of MS2 and E. coli from water by filtration were plotted against 

volume filtered.  Histograms were plotted to examine the distribution of effectiveness as 

measured by reductions in test microbes. 

 

3.3.2  Field testing 

Water treatment technology performance under laboratory conditions may not 

represent performance in household use.  In order to determine effectiveness of filters 

under field use conditions, filters were placed in households in Kandal Province, 

Cambodia.  Sixty households received the CWP1 filter and 60 households received the 

CWP2.  An additional 60 “control” households were also included in the intervention 

trial.  Biweekly samples of raw, stored water and filter-treated or boiled water were taken 

for analysis.     

 

3.3.2.1  Study site of Prek Thmey, Cambodia 

The study site was the rural/peri-urban village of Prek Thmey, approximately 15 

km from Phnom Penh, Cambodia in Kandal Province.  Households receiving filters were 

trained in proper use and care of the filter by the project team, using materials and 

methods developed by Resource Development International (RDI), a local NGO that has 

performed several village-scale implementations of the technology in the region, most 

often with accompanying interventions for sanitation and hygiene within child and adult 

educational and vocational programs.   
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 The 60 additional households served as controls for the duration of the project and 

followed their normal household water use and handling practices.  Control households 

who practiced boiling of household drinking water also contributed samples to this study 

for a comparison of CWP1/CWP2 effectiveness versus boiling.   

 

3.3.2.2  Filters 

The CWP1 and CWP2 filter, described previously, were chosen for field 

evaluation for effectiveness against E. coli, a bacterial indicator of human fecal 

contamination of water.  The CWP1 was the currently produced ceramic filter 

intervention in Cambodia, made at the RDI factory in Kandal Province.  The CWP2 filter 

was made from iron oxide-rich base clay, which was associated with greater reductions of 

viruses in initial testing (data not shown).  Filters were in all other respects identical.  

Filters were fired to cone 012, flow tested, and coated with AgNO3.  The two filters were 

indistinguishable in appearance.           

   

3.3.2.3  Water sampling and sample handling 

Microbiological effectiveness of filter units in household use was assessed 

through 9 bi-weekly visits at each household for sampling over 18 weeks.  At each visit, a 

250 ml sample of untreated, stored household water and a 250 ml sample of 

CWP1/CWP2 treated water were taken for analysis.  When available, untreated and 

stored boiled water samples were taken from control households using that method of 

drinking water treatment.  Samples were kept cold (on ice in a cooler) until delivery to 

the laboratory and thereafter stored at 4oC until processing by membrane filtration, most 
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often the same day and in all cases within 24 hours of the sampling event.  Samples were 

collected from the household stored water by users who were asked to demonstrate their 

normal method of collecting water from the container for use that day.  Samples of 

treated water were taken directly from the tap of the CWP1/CWP2 filter without flaming 

the tap or otherwise disinfecting it.   

 

3.3.2.4  Water quality testing methods  

E. coli in samples were enumerated in field samples by membrane filtration and 

incubation on selective media as described above in accordance with EPA Approved 

Method 1604 (USEPA 2002) with the substitution of HiMedia over MI culture media.  

Results were reported as colony forming units (cfu) per 100 ml sample.   Nine rounds of 

water samples were taken from each study household over the 18 week sampling period 

(June-October 2006).  Turbidity of water samples was measured in triplicate using a 

turbidimeter (Hach Pocket®) and the average values reported as NTU.       

 

3.3.2.5  Data management and analysis 

Water quality data were entered into a Microsoft Excel spreadsheet or Microsoft 

Access database and copied into Stata version 8.1 (Stata Corporation, College Station, 

TX, USA).  All data were entered twice to ensure consistency and accuracy of data input.   

 E. coli concentrations in samples were calculated based on a minimum of two 

dilutions and three replicates according to Standard Methods (Clesceri et al.  1998).  

Filter effluent water quality data were stratified by source, turbidity, and raw water E. 

coli concentrations.  Log10 reductions for E. coli were calculated for all complete sample 
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sets (both pre- and post-treatment concentrations) for both filters tested overall and 

stratified by time in use (0 – 18 weeks).   

 

3.3.3  Statistical analysis 

Descriptive statistics were used to characterize the water quality testing results 

from laboratory and field samples, including arithmetic mean (with 95% confidence 

intervals), standard deviation, and variance of log10 reduction of E. coli and MS2.  

Parametric statistical tests were used to compare results.  Comparisons were made 

initially using a two-sample mean comparison (t) test.  In comparing log10 reduction 

values across parameters of filter type, challenge water, and other characteristics, 

ANOVA was used.  Assumptions made in comparing log10 reduction data in parametric 

statistical testing were that data were normally distributed and groups had equal 

variances.  All tests were compared using a significance level of α = 0.05.     Statistical 

testing was performed in Stata version 8.1 (Stata Corporation, College Station, TX, 

USA).  
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3.4  Results 

3.4.1  Laboratory results 

Results of repeated laboratory testing of filters for E. coli and MS2 reductions 

from seeded waters over time are summarized in Table 3.3.  Figures 3.1 (E. coli) and 3.2 

(MS2) summarize these results graphically.     

     

3.4.1.1  Results by filter type 

The results for repeated challenges indicate some variability in performance 

among filters in reducing both test microbes from both test waters.  Complete filter 

challenge data are shown in Figures 3.3 to 3.14.  The CWP1 reduced E. coli by a mean 

2.4 log10 units (99.6%) and MS2 by a mean 1.0 log10 units (90%) in challenge water A 

(rain water) and E. coli by a mean 2.3 log10 units (99.5%) and MS2 by a mean 1.7 log10 

units (98%) in challenge water B (surface water).    The CWP2 reduced E. coli by a mean 

2.1 log10 units (99.2%) and MS2 by a mean 1.4 log10 units (96%) in challenge water A 

and E. coli by a mean 2.2 log10 units (99.4%) and MS2 by a mean 1.3 log10 units (95%) in 

challenge water B.    The CWP3 reduced E. coli by a mean 1.7 log10 units (98.1%) and 

MS2 by a mean 1.3 log10 units (95%) in challenge water A and E. coli by a mean 2.3 

log10 units (99.5%) and MS2 by a mean 2.0 log10 units (99%) in challenge water B. 

An ANOVA comparison of differences between filters tested showed significant 

differences for the reduction of E. coli (p = 0.0020) but not for MS2 (p = 0.48) among the 

CWP1, CWP2, and CWP3.  Two sample mean comparison (t) tests between filter types 

suggested greater reduction of E. coli in CWP1 over CWP2 (p = 0.021) and for CWP2 

over CWP3 (p = 0.013).      
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3.4.1.2  Results by water type 

E. coli and MS2 log10 reductions by water type are given in Table 3.1 and in 

Figures 3.1 and 3.2.  The CWP1 reduced E. coli by a mean 2.3 log10 (95% CI 2.0 – 2.6) 

in rain water and a mean 2.4 log10 (95%CI 2.1 – 2.6) in surface water.  The CWP1 

reduced MS2 by a mean 1.0 log10 (95% CI 0.37 – 1.6) in rain water and a mean 1.7 log10 

(95%CI 1.1 – 2.3) in surface water.    The CWP2 reduced E. coli by a mean 2.1 log10 

(95% CI 1.8 – 2.3) in rain water and a mean 2.2 log10 (95%CI 1.9 – 2.5) in surface water.  

The CWP2 reduced MS2 by a mean 1.4 log10 (95% CI 0.71 – 2.0) in rain water and a 

mean 1.3 log10 (95%CI 0.82 – 1.8) in surface water.    The CWP3 reduced E. coli by a 

mean 1.7 log10 (95% CI 1.5 – 2.0) in rain water and a mean 2.3 log10 (95%CI 2.2 – 2.5) in 

surface water.  The CWP3 reduced MS2 by a mean 1.3 log10 (95% CI 0.83 – 1.7) in rain 

water and a mean 2.0 log10 (95%CI 1.7 – 2.3) in surface water.     

ANOVA results indicate that E. coli reductions were different across all filters by 

challenge water (p = 0.0009) with challenge water B showing greater reductions.  

ANOVA results for MS2 reduction show a significant difference across filters by water 

type as well (p = 0.0089). Within filter types, two sample mean comparison (t) tests 

showed a significantly higher reduction of E. coli within CWP3 (p < 0.0001) but not for 

CWP1 (p = 0.31) or CWP2 (p = 0.23).  For reduction of MS2 within water types, CWP1 

(p = 0.0005) and CWP3 (p = 0.0005) showed significantly greater reduction using surface 

water; no significant difference was detected for CWP2 (p = 0.60).   
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3.4.1.3  Results by microbe type 

ANOVA results for the difference in microbe type in performance data showed 

consistently higher reduction of E. coli than MS2 (p < 0.0001) across both challenge 

waters and filter types.      These results are consistent with other studies by Van Halem 

(2006) and Lantagne (2001a).   

 

3.4.1.4  Changes in microbial reduction over time 

Log10 reductions of E. coli were not correlated with throughput over the limited 

volume tested; linear regression using volume filtered as the independent variable did not 

yield evidence of association (R2 = 0.016) in data pooled from filter types and challenge 

waters.  Similarly little evidence of correlation was observed between MS2 reduction and 

throughput over time (R2 = 0.17).   

 Greater reductions of both MS2 and E. coli were observed in initial testing of 

filters (within the first 100 l) in both challenge waters and in all filter types.  For E. coli, 

the mean log10 reduction was 2.9 log10 (95% CI 2.5 – 3.4) within the first 100 l of testing 

and 2.1 log10 (95% CI 2.0 – 2.2) thereafter (p < 0.0001).  For MS2, the mean log10 

reduction was 4.1 log10 (95% CI 3.5 – 4.8) within the first 100 l of testing and 1.2 log10 

(95% CI 1.1 – 1.3) thereafter (p < 0.0001).  The effect was consistent and significant in 

both challenge waters and in all filters tested for both E. coli and MS2.       
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3.4.2  Field results 

3.4.2.1  Results by treatment type 

Treatment by use of a CWP1, CWP2, or boiling resulted in significant reductions 

of E. coli in household stored water (Figures 3.15 and 3.16).  Treatment by boiling (n = 

282 paired samples of treated and untreated water) resulted in an arithmetic mean 1.9 

log10 reduction in E. coli (95% CI 1.7 – 2.0).  Treatment by use of the CWP1 (n = 485 

paired samples of treated and untreated water) resulted in an arithmetic mean 2.1 log10 

reduction in E. coli (95% CI 2.0 – 2.2).  Treatment by use of the CWP2 (n = 496 paired 

samples of treated and untreated water) resulted in an arithmetic mean 2.0 log10 reduction 

in E. coli (95% CI 1.9 – 2.1).  Effect of treatment type on E. coli log10 reduction as 

determined by ANOVA yielded a significant result (p < 0.0001) indicating significant 

differences between methods.   

Two sample t tests (unpaired) indicated that the log10 reduction of E. coli by the 

CWP1 was greater than by boiling (p = 0.0002).  Reduction of E. coli was not greater in 

the CWP2 than boiling (p = 0.36).  The log10 reduction of E. coli by the CWP1 was 

significantly greater than by the CWP2 (p = 0.0003).  Therefore the order of effectiveness 

against E. coli of the water treatments was observed to be CWP1 > boiling = CWP2.         

The calculation of log10 reduction of E. coli in field samples was often limited by 

a non-detect in the treated water effluent (E. coli/100 ml < 1 cfu), resulting in a log10 

reduction value (LRV) that was a function of the measured E. coli in the untreated water 

sample only.  This was the case for 124 samples of water treatment by boiling (44% of all 

samples), 231 CWP1 samples (48%), and 222 CWP2 samples (45%).  There was a 

substantial difference in the calculated log10 reduction of E. coli between samples that 
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were limited by untreated water E. coli counts (<1 cfu/100 ml post-treatment) and those 

that included detectable E. coli in post-treatment water samples.  For boiled water 

samples, the arithmetic mean log10 reduction of E. coli was 2.6 (95%CI 2.4 – 2.8) among 

samples with E. coli non-detects in post-treatment water, versus 1.4 log10 (95% CI 1.2 – 

1.6) for those with detectable E. coli in post-treatment water, a difference of 1.2 log10 (p < 

0.0001) was observed.  Similarly, for water samples taken pre- and post-treatment for the 

CWP1 filter, sample sets including a post-treatment non-detect for E. coli resulted in a 

log10 reduction of 2.6 (95% CI 2.5 – 2.7), versus 1.6 log10 (95% CI 1.5 – 1.8) where 

detectable E. coli remained (p < 0.0001).  In CWP2 samples, the difference was 2.4 log10 

(95% CI 2.2 – 2.5) versus 1.7 log10 (1.6 – 1.8), also significant at the α = 0.05 level (p < 

0.0001).               

 The log10 reduction of E. coli in field samples varied considerably for all 

treatment methods, with reductions generally following a normal distribution about a 

mean of 2 log10, with some samples in the negative range and others above 4 log10.  Plots 

of distributions of these data are presented in Figures 3.17 – 3.19.   

The distribution of E. coli counts in 100 ml treated water samples are shown in 

figures 3.20 – 3.22.  For the CWP1, arithmetic mean E. coli counts per 100 ml were 110 

(95% CI 41-170) and geometric mean counts were 16 (95% CI 13-20) against arithmetic 

and geometric mean pre-treatment concentrations of 3800 (95% CI 2200-5400) and 510 

(95% CI 420-630), respectively.  For the CWP2, arithmetic mean E. coli counts per 100 

ml were 110 (95% CI 57-170) and geometric mean counts were 14 (95% CI 11-18) 

against arithmetic and geometric mean pre-treatment concentrations of 2000 (95% CI 

1300-2600) and 410 (95% CI 340-500), respectively.  For boiling, arithmetic mean E. 
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coli counts per 100 ml were 120 (95% CI 68-170) and geometric mean counts were 24 

(95% CI 17-33) against arithmetic and geometric mean pre-treatment concentrations of 

2900 (95% CI 1570-4300) and 450 (95% CI 340-580), respectively.     

 

3.4.2.2  Results by water type 

An ANOVA for E. coli log10 reduction by stored household water source 

indicated a significantly greater reduction of indicator bacteria in surface water sources (p 

< 0.0001) such as river water.  All households included in the study were within 500 m of 

the Bassac river, a primary drinking water source.  Similar associations were not 

observed for rain water (p = 0.77) or well water sources (p = 0.25 for tube wells; p = 0.46 

for hand-dug wells).  Water source categories were not mutually exclusive; 13.8% (n = 

273) of samples sets taken from household (untreated) stored water were from more than 

one source.     

An additional ANOVA was used to examine the source-specific log10 reduction of 

E. coli stratified by method of water treatment.  For households reporting boiling water, 

surface water was associated with higher levels of E. coli reduction (p < 0.0001), as was 

the use of a tube well (p < 0.0001).  Reductions in rain water were not significantly 

greater (p = 0.98).  Insufficient numbers of households in this grouping reported use of a 

hand-dug well, so p-values for this analysis were not computed for that source.     

For samples taken from the CWP1, the use of surface water was not associated 

with a greater reduction of E. coli (p = 0.91) but the use of rain water was (p = 0.031).  

The use of water from a tube well (p = 0.095) or hand dug well (p = 0.30) was not 

associated with higher levels of E. coli reduction through use of a CWP1.     
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For samples taken from the CWP2, the use of surface water was associated with a 

greater reduction of E. coli (p < 0.0001) but the use of rain water was not (p = 0.22).  The 

use of water from a tube well (p = 0.38) was not associated with higher levels of E. coli 

reduction through use of a CWP1.    Insufficient numbers of households in this grouping 

reported use of a hand-dug well, so p-values for this analysis were not computed for that 

source.     

 

3.4.2.3  Results by turbidity 

The arithmetic mean turbidity in stored, boiled water samples was 9.1 NTU, 

versus 2.6 NTU for effluent samples taken from the CWP1 and 2.9 NTU in CWP2 

samples.  Untreated water turbidity (arithmetic mean = 8.9 NTU, 95% CI 8.6 NTU – 9.3 

NTU) was not significantly different between sample sets from boiling or treatment by 

either filter according to ANOVA.  Boiled water samples were significantly more turbid 

(p < 0.0001) than CWP1 or CWP2 effluent samples.  Measured turbidity in filter effluent 

samples from the CWP1 and CWP2 were not significant at the 0.05 level.     

ANOVA determination of the effect of turbidity levels in the untreated water on 

log10 reduction of E. coli yielded a significantly greater reduction at turbidity levels 

higher than 10 NTU for treatment by boiling (p = 0.0057), use of the CWP2 (p = 0.0028), 

and a result at the margin of significance for use of the CWP1 (p = 0.057).  Linear 

regression using log10 reduction of E. coli as a dependent variable and untreated water 

turbidity as the continuous independent variable were not correlated with use of a CWP1 

(R2 = 0.0012), a CWP2 (R2 = 0.0048) or boiling (R2 = 0.012).  Results indicate a weak 

correlation between log10 reduction of E. coli and turbidity but this association is not 
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clear across turbidity levels, especially for turbidity < 10 NTU.  In this study, 370 

samples of untreated water (19% of all samples) had turbidity greater than 10 NTU.          

 

3.4.2.4  Results by time 

ANOVA determination of the effect of time in use on log10 reduction of E. coli 

over the follow up period (18 weeks) by treatment method yielded a significant result for 

water treatment by the CWP1 (p < 0.0001), use of the CWP2 (p < 0.0001), but not for 

boiling (p = 0.11).  Plots of the log10 reduction over the study period (Figures 3.23 and 

3.24) show wide variation in the performance of the CWP1 and CWP2 during the follow 

up.  Because rainfall is known to be an important determinant of water quality and 

availability, linear regression was performed to determine whether any association 

existed between rainfall and E. coli reduction over time, with rainfall in mm (two week 

cumulative) as a continuous independent variable.  No association was observed (R2 = 

0.0036).   

 

3.4.3  Comparing laboratory and field results 

Laboratory and field results agreed for log10 reduction of E. coli by use of the 

CWP1.  Results for E. coli reduction in the laboratory pooled across rain water and 

surface waters (challenge waters A and B) yielded a mean of 2.3 log10 (95% CI 2.1 – 2.5, 

n = 68).  The mean field log10 reduction was 2.1 (95% CI 2.0 – 2.2, n = 485).  An 

unpaired t test assuming equal variances in the data yielded a p-value of 0.097.   

 CWP2 results in the laboratory and field also agreed for reduction of E. coli.  

Laboratory results (pooled across challenge waters A and B) indicate a 2.1 log10 
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reduction of E. coli (1.9 – 2.3, n = 68) versus a mean 2.0 log10 reduction (95% CI 1.9 – 

2.1) in field use (p = 0.32).    

 

3.5  Discussion  

3.5.1  Laboratory results 

3.5.1.1  Laboratory results by filter type 

E. coli reduction by filters CWP1, CWP2, and CWP3 were all near 99% under 

challenge conditions, although the CWP1 did marginally outperform the other two.  MS2 

reductions for all three filters were comparable, with mean reductions of 90% - 99%.  

Results suggest little effect of AgNO3 or FeOOH additives on the performance of the 

filters against these indicators.  These numbers are lower than other reported values for 

reduction of E. coli and higher than reported reduction values for MS2 from other 

laboratory studies over limited volumes using similar filters and different challenge 

waters (Van Halem 2006; Lantagne 2001).             

 

3.5.1.2  Laboratory results and changes over time 

Filter challenge tests are frequently carried out using relatively low volumes of 

challenge water.  Results reported here suggest that initial performance of filter in 

challenge testing in low volumes (e.g., under 100 l) may not be indicative of consistent 

levels of performance over time.  Results from the first 100 l of challenge testing were 

significantly higher in all filter types, in both challenge waters, and for both microbes 

tested, in several cases more than one order of magnitude higher.     
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3.5.2  Field results 

3.5.2.1  Field results by treatment type 

Although the reduction of E. coli by the CWP1 was shown to be significantly 

greater than either boiling or use of the CWP2, the observed differences in effectiveness 

were small.  And because these results indicate only a marginally greater performance for 

one treatment method against one bacterial indicator organism, these results do not 

strongly indicate that one of these methods is more effective overall for the treatment of 

household drinking water.    The reduction of E. coli in household samples for all 

treatment methods followed a log-normal distribution centered around 99% reduction, 

with reduction as high as 99.9999% and also negative reductions.   

Negative log reduction values occurred in 24 sample sets of CWP1 (4.9%), 25 of 

CWP2 (5.0%), and 23 sample sets of boiled water (8.2%) when comparing E. coli counts 

in untreated versus treated water, indicating higher levels in the treated water.  The 

observation of increased levels of E. coli in treated water may be related to improper 

handling or water storage methods (in the case of boiled water), improper cleaning of the 

filters by users, changing levels of E. coli in water over time including the possibility of 

regrowth in the treated water (Desmarais et al.  2002) or die-off in the untreated water, or 

other factors.  These results are consistent with several studies (e.g., Wright et al.  2004 

and Jensen et al.  2002) showing that recontamination of stored water in the home could 

significantly impact the quality of potable water used in the household.   
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3.5.2.2  Field results by turbidity 

The CWP1 and CWP2 filter effluent mean turbidities were significantly lower 

than the post-treatment turbidity of boiled water, as expected.  No difference was 

observed in the turbidity of samples from the CWP1 and CWP2.    

Greater reduction of E. coli was associated with increased turbidity for all 

treatment types.  One possible reason for this is the slightly greater concentrations of E. 

coli observed in turbid water.  For example, out of a total 1906 samples of untreated, 

stored household water with turbidity data, the arithmetic mean E. coli count (cfu/100 

ml)was 2.5 x 103 (95% CI 1.8 x 103 – 3.1 x 103) in samples (n = 1609) with turbidity ≤ 

10.0 NTU and 4.6 x 103 (95% CI 2.1 x 103 – 7.2 x 103) in samples (n = 297) with 

turbidity > 10.0 NTU, a statistically significant difference (p < 0.0001).  The greater 

concentration of E. coli in relatively turbid water could be associated with water source 

characteristics, a clarification step performed by users (such as settling/storage, which 

may be linked to a reduction in microbes via die-off in storage), or microbial association 

with particulates in water.  This association is not strong, however.     

 

3.5.2.3  Field results by time in use 

Filter effectiveness in the field was maintained over the 18 week trial period, with 

120 households reporting daily use of approximately 20 l.  Variability in the E. coli 

reductions by the CWP1 and CWP2 filters over the study period may be associated with 

variations in source water quality, changes in filter use, changes in filter performance, or 

other unmeasured factors.     
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3.5.3  Comparing laboratory and field testing results 

Studies have reported lower effectiveness of filters in field use (Baumgartner 

2006; Roberts 2004).  In this study, field performance of the two CWP filters was nearly 

comparable to laboratory performance for E. coli reduction.  The CWP1 reduced E. coli 

in stored household water by approximately 99% (arithmetic mean 2.1 log10, 95% CI 2.0 

– 2.2 log10, n = 485 total sample sets).  The CWP2 reduced E. coli by an approximately 

equivalent amount of nearly 99% (arithmetic mean 2.0 log10, 95% CI 1.9 – 2.1 log10, n = 

496 total sample sets).  The approximately 2 log10 reductions by CWP1 and CWP2 in the 

field are only somewhat lower than their reductions observed in the laboratory, with 

mean laboratory reductions of 2.3-2.4 log10 for CWP1 and 2.1-2.2  log10 for CWP2.  

Evidence suggests that the calculated log10 reduction of E. coli in field samples by 

all treatment methods underestimates performance because non-detects in treated water 

samples limit the LRV.  This amounts to computed LRV for these samples representing 

potential minima for reduction of E. coli.  Results from the field were consistent with 

tests from the laboratory for log10 reduction of E. coli, however, so this interpretation 

may not be warranted.  Even though a large percentage of samples sets in the field were 

limited by non-detects of E. coli in treated water (not the case in any laboratory samples), 

the LRV means from laboratory and field samples were not significantly different.             

 

3.5.4  Standards of performance 

Extensive laboratory and field testing of point-of-use water treatment 

technologies is needed to characterize their performance as water quality interventions.  

Because ceramic water purifiers (water treatment filters) are being promoted as means of 
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improving water quality and lowering diarrheal disease, substantial levels of microbial 

reductions may be needed in field use to produce water that is of low risk.   

In the United States and in other rich countries, microbiological effectiveness 

standards based on reductions of pathogenic or indicator microbes apply to point of use 

water treatment devices.  The United States Environmental Protection Agency and the 

National Sanitation Foundation (now NSF-International) require that water treatment 

devices intended to produce potable drinking water consistently meet a six log10 

reduction of bacteria, four log10 reduction of viruses, and a three log10 reduction of 

protozoa (USEPA 1987, NSF 2003), using key surrogate microbes over a range of 

challenge water quality characteristics.  The filters tested in this study would not meet the 

required level of performance for bacteria or viruses.  The risk-based approach for setting 

technology performance standards, however, now advocated by the World Health 

Organization (WHO 2006), recognizes the need for incremental improvement in water 

quality that can have real benefits where waterborne disease burdens are high.  Because 

relatively modest improvements in water quality at the household level may result in 

substantial health gains in some settings, technologies not achieving the levels of 

microbial reduction required in rich countries should be studied further for potential 

health impacts in developing countries.   

 

3.5.5  Previous studies 

Data on the laboratory and field performance of the CWP-type filter are limited.  

Van Halem (2006) suggests that filters produced at the same factory (RDI, Kandal 

Province, Cambodia) can provide approximately 99.9% reduction in E. coli, with <90% 
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reduction of MS2.  These values fall within the range of our testing data, although we 

found lower mean reductions in E. coli and higher mean reductions of MS2.     

 

3.5.6  Relevance of these findings to other CWP programs 

Low cost ceramic filtration for drinking water treatment in developing countries is 

diverse, varying by overall design, production method, clay and other materials, quality 

assurance and quality control (QA/QC) procedures, burnout material, firing temperatures 

and methods, chemical (e.g., colloidal silver) amendments, and other characteristics 

(Lantagne 2001; Sobsey 2002; Cheesman 2003; Dies 2003).  Because the design and 

available materials and methods vary widely from region to region, effectiveness data for 

one ceramic filter design may not be representative of other systems, or even in some 

cases of separate batches of filters made at the same factory where production methods 

are not highly controlled.  Moreover, pot-style ceramic filtration technologies are 

changing as NGOs and others work to test and improve the technologies to be more 

effective interventions for improving water quality at the point of use.  Because the 

Filtrón (CWP) model has been widely replicated worldwide and adapted to local 

conditions, the effectiveness data presented here may or may not be generalizable.  More 

work is clearly needed to increase the evidence base of effectiveness for these promising 

interventions.  

 

3.5.7  Future work 

Low-cost testing methods are now available to evaluate the microbiological 

effectiveness of water treatment technology in developing countries, and these should be 
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used to evaluate technologies for use at the local level.  Laboratory and field-based 

testing of interventions will be critical in building the evidence base for decentralized 

water treatment options.  Because available resources, technologies, target contaminants, 

concentrations of microbes and other contaminants in drinking water sources, water 

quality characteristics, population susceptibility to waterborne infectious diseases, and 

other factors vary widely in the developing world, local-based intervention testing for 

specific intervention objectives is warranted, including microbiological testing.  These 

data can then be used in a risk-based model (e.g., Howard et al.  2006) to evaluate the 

extent to which treatment is needed and the health effects of providing safe water given 

local water quality, quantity, and use conditions. 

 

3.6  Conclusions 

Key findings from this study are articulated below.   

• The CWP1 and CWP2 significantly reduced surrogates for waterborne bacterial 

and viral pathogens, with a mean of approximately 99% (2 log10) reduction for E. 

coli bacteria (laboratory and field testing) and 90-99% (1 - 2 log10) reduction for 

viruses (laboratory testing only).   

• Laboratory and field reduction of E. coli by filters were comparable.   

• Reduction of E. coli was greater in the CWP1 filter, followed by the CWP2 and 

CWP3 filters in laboratory testing.   

• The CWP1 reduced E. coli in field testing to a marginally greater extent than did 

the CWP2.   
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• The reduction of MS2 in laboratory testing was not significantly different 

between filters.   

• The application of silver compounds to CWP-type filters is widely held to 

increase microbiological effectiveness but this was not observed in this study.  

The CWP3, having no application of silver, was observed to be comparable in 

microbiological effectiveness to the CWP1 and CWP2 (with silver amendment).   

• The addition of iron oxide amendments to the base clay before firing (CWP2) did 

not significantly change the microbiological effectiveness of the filters in the 

laboratory or in the field against E. coli or MS2.   

• Effectiveness of filters against the bacterial indicator E. coli was maintained 

during field use conditions over 18 weeks, although statistically significant 

changes in mean reductions over the sample period were observed.    

• Log10 reductions of E. coli in boiled water samples were comparable to 

performance of the filters over the 18 week field trial.  This finding suggests that 

boiled water may be recontaminated after treatment through improper storage.   

• Reduction of microbes was marginally higher in more turbid waters, both in the 

laboratory and in the field, probably due to either particle association of microbes 

or higher levels of E. coli in field samples with higher turbidity.      
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Filter Microbe Challenge water na Vb 

(l) 
Mean influent
(log10 units)c 

Mean filtrate 
(log10 units)d 

LRV 
meane 

95% CI LRV 
std dev

LRV 
variance

Rain water (A) 34 660 4.6 2.3 2.3 2.0-2.6 0.83 0.69 E. coli 
Surface water (B) 34 660 5.1 2.7 2.4 2.1-2.6 0.72 0.51 
Rain water (A) 17 660 6.9 5.6 1.3 0.47-2.1 1.6 2.6 

CWP1 

MS2 
Surface water (B) 17 660 6.6 4.9 1.7 1.1-2.3 1.2 1.4 
Rain water (A) 34 660 4.6 2.6 2.1 1.8-2.3 0.77 0.59 E. coli 
Surface water (B) 34 660 5.1 2.9 2.2 1.9-2.5 0.79 0.62 
Rain water (A) 17 660 6.9 5.4 1.4 0.73-2.0 1.3 1.6 

CWP2 

MS2 
Surface water (B) 17 660 6.6 5.4 1.3 0.82-1.8 0.97 0.93 
Rain water (A) 68 1340 4.6 2.9 1.8 1.5-2.0 1.0 1.0 E. coli 
Surface water (B) 68 1340 5.1 2.7 2.4 2.2-2.6 0.73 0.53 
Rain water (A) 34 1340 6.9 5.6 1.3 0.83-1.7 1.2 1.6 

CWP3 

MS2 
Surface water (B) 34 1340 6.6 4.8 1.9 1.7-2.2 0.78 0.62 

a.  Number of sample sets  
b.  Total spiked throughput (l)  
c.  Concentration (arithmetic mean) per 100 ml sample, log10 units 
d.  Concentration (arithmetic mean) per 100 ml sample, log10 units 
e.  Arithmetic mean log reduction value (LRV) = log10 (influent / filtrate).   

Table 3.3.  Summary of laboratory effectiveness data for the CWP1, CWP2, and CWP3 ceramic filters.   
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Treatment  
method 

Water sourcea nb Mean influent 
(log10 units)c 

Mean effluent 
(log10 units)d 

LRV 
meane 

95% CI LRV 
std dev 

LRV 
variance 

All 485 3.6 1.5 2.1 2.0-2.2 1.2 1.4 
Rain water 368 3.5 1.4 2.1 2.0-2.2 1.2 1.4 

Surface water 102 3.4 1.4 2.1 1.9-2.3 1.3 1.6 
Well water 77 3.9 1.5 2.4 2.2-2.6 1.0 1.0 

CWP1 

Other/not known 0 - - - - - - 
All 496 3.3 1.3 2.0 1.9-2.1 1.1 1.2 

Rain water 327 3.3 1.3 2.0 1.9-2.1 1.1 1.2 
Surface water 116 3.1 1.0 2.1 1.9-2.3 1.0 1.1 

Well water 109 3.3 1.3 2.0 1.8-2.2 1.1 1.2 

CWP2 

Other/not known 0 - - - - - - 
All 282 3.5 1.5 1.9 1.7-2.0 1.3 1.7 

Rain water 137 3.5 1.6 1.9 1.6-2.1 1.3 1.6 
Surface water 64 3.3 1.1 2.2 2.0-2.5 1.2 1.4 

Well water 74 3.3 1.8 1.5 1.2-1.8 1.3 1.8 

Boiling 

Other/not known 59 3.5 1.5 2.0 1.7-2.4 1.3 1.7 
a.  Sources are not mutually exclusive.  Samples were taken from the household stored water, which could have come 
from multiple sources. 
b.  Number of matched raw/treated water samples. 
c.  Concentration (arithmetic mean) per 100 ml sample, log10 units 
d.  Concentration (arithmetic mean) per 100 ml sample, log10 units 
e.  Arithmetic mean log reduction value (LRV) = log10 (pre-treatment concentration / filtrate concentration).   

Table 3.4.  Field effectiveness data summary for water treatment by boiling, the CWP1, and the CWP2 over the 18 week trial.
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Figure 3.1.  Box-and-whisker plot for log10 reduction of E. coli CN13 by filter type 
(CWP1, CWP2, CWP3) and challenge water (A, B).  Upper and lower points represent 
maxima and minima, boxes indicate 25th and 75th percentile boundaries, the line break 
within each box represents the median value, and the points are arithmetic means for all 
sample sets.      
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Figure 3.2.  Box-and-whisker plot for log10 reduction of MS2 by filter type (CWP1, 
CWP2, CWP3) and challenge water (A,B).  Upper and lower points represent maxima 
and minima, boxes indicate 25th and 75th percentile boundaries, the line break within each 
box represents the median value, and the points are arithmetic means.      
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Figure 3.3.  Log10 concentrations of E. coli CN13 in CWP1 against spiked rain water 
(challenge water A) over 680 l (n = 34 sampling events) in both influent and effluent.   
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Figure 3.4.  Log10 concentrations of E. coli CN13 in CWP1 against spiked surface water 
(challenge water B) over 680 l (n = 34 sampling events) in both influent and effluent.   
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Figure 3.5.  Log10 concentrations of E. coli CN13 in CWP2 against spiked rain water 
(challenge water A) over 680 l (n = 34 sampling events) in both influent and effluent.   
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Figure 3.6.  Log10 concentrations of E. coli CN13 in CWP2 against spiked surface water 
(challenge water B) over 680 l (n = 34 sampling events) in both influent and effluent.   
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Figure 3.7.  Log10 concentrations of E. coli CN13 in CWP3 (two units run in parallel) 
against spiked rain water (challenge water A) over 680 l each (total volume 1360 l) (n = 
34 sampling events per unit) in both influent and effluent.   
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Figure 3.8.  Log10 concentrations of E. coli CN13 in CWP3 (two units run in parallel) 
against spiked surface water (challenge water B) over 680 l each (total volume 1360 l) (n 
= 34 sampling events per unit) in both influent and effluent.   
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Figure 3.9.  Log10 concentrations of MS2 in CWP1 against spiked rain water (challenge 
water A) over 660 l (n = 16 sampling events) in both influent and effluent.   
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Figure 3.10.  Log10 concentrations of MS2 in CWP1 against spiked surface water 
(challenge water B) over 660 l (n = 16 sampling events) in both influent and effluent.   
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Figure 3.11.  Log10 concentrations of MS2 in CWP2 against spiked rain water (challenge 
water A) over 660 l (n = 17 sampling events) in both influent and effluent.   
 

0

1

2

3

4

5

6

7

8

9

10

30 90 15
0

21
0

27
0

33
0

39
0

45
0

51
0

57
0

66
0

Throughput (liters)

Lo
g 1

0 
M

S
2 

(p
fu

/m
l)

Effluent
Influent

 
Figure 3.12.  Log10 concentrations of MS2 in CWP2 against spiked surface water 
(challenge water B) over 660 l (n = 17 sampling events) in both influent and effluent.   
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Figure 3.13.  Log10 concentrations of MS2 in CWP3 (two units run in parallel) against 
spiked rain water (challenge water A) over 660 l each (total volume 1320 l) (n = 17 
sampling events per unit) in both influent and effluent.   
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Figure 3.14.  Log10 concentrations of MS2 in CWP3 (two units run in parallel) against 
spiked surface water (challenge water B) over 660 l each (total volume 1320 l) (n = 17 
sampling events per unit) in both influent and effluent.   



 

 

96

96

 

1

10

100

1,000

10,000

100,000

Untreated
boiling

Treated
boiling

Untreated
CWP1

Treated
CWP1

Untreated
CWP2

Treated
CWP2

E
. c

ol
i 

(lo
g 1

0 
cf

u/
10

0m
l)

 
Figure 3.15.  Box and whisker plot of E. coli counts per 100 ml sample in water treated 
by boiling, the CWP1, and the CWP2.  Boxes indicate 25th and 75th percentile 
boundaries, the line break within each box represents the median value, and the points are 
arithmetic means.     The upper points represent maxima; minima (<1 E. coli cfu per 100 
ml sample) are not displayed on this graph (note log scale). 
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Figure 3.16.  Box and whisker plot of E. coli log10 reduction sample in water treated by 
boiling, the CWP1, and the CWP2.  Boxes indicate 25th and 75th percentile boundaries, 
the line break within each box represents the median value, and the points are arithmetic 
means.     The upper and lower points represent maxima and minima.   
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Figure 3.17.  Histogram showing the distribution of log10 reduction of E. coli in CWP1 
filters in field use over the 18 week field trial period.  Arithmetic mean: 2.1 (95% CI 2.0-
2.2); 24 filters (4.9%) produced water of worse apparent quality than untreated water 
(log10 reduction of E. coli < 0 ) 
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Figure 3.18.  Histogram showing the distribution of log10 reduction of E. coli in CWP2 
filters in field use over the 18 week field trial period.  Arithmetic mean: 2.0 (95% CI 1.9-
2.1); 25 sample sets (5.0%) produced water of worse apparent quality than untreated 
water (log10 reduction of E. coli < 0 ) 
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Figure 3.19.  Histogram showing the distribution of log10 reduction of E. coli by boiling 
over the 18 week field trial period.  Arithmetic mean: 1.9 (95% CI 1.7-2.0); 23 sample 
sets (8.2%) produced water of worse apparent quality than untreated water (log10 
reduction of E. coli < 0 ) 
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Figure 3.20.  Histogram showing the distribution of E. coli per 100 ml sample in 
household drinking water treated by the CWP1.  Arithmetic mean E. coli counts per 100 
ml were 110 (95% CI 41-170) and geometric mean counts were 16 (95% CI 13-20) 
against arithmetic and geometric mean pre-treatment concentrations of 3800 (95% CI 
2200-5400) and 510 (95% CI 420-630), respectively.  Note truncated abscissa.  
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Figure 3.21.  Histogram showing the distribution of E. coli per 100 ml sample in 
household drinking water treated by the CWP2.  Arithmetic mean E. coli counts per 100 
ml were 110 (95% CI 57-170) and geometric mean counts were 14 (95% CI 11-18) 
against arithmetic and geometric mean pre-treatment concentrations of 2000 (95% CI 
1300-2600) and 410 (95% CI 340-500), respectively.  Note truncated abscissa.   
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Figure 3.22.  Histogram showing the distribution of E. coli per 100 ml sample in 
household drinking water treated by boiling.  Arithmetic mean E. coli counts per 100 ml 
were 120 (95% CI 68-170) and geometric mean counts were 24 (95% CI 17-33) against 
arithmetic and geometric mean pre-treatment concentrations of 2900 (95% CI 1570-
4300) and 450 (95% CI 340-580), respectively.  Note truncated abscissa.   
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Figure 3.23.  Field performance of the CWP1 filter over nine biweekly sampling points, 
assuming that 20 l per day per household (the mean reported by households) were treated.  
Points are arithmetic means with bars representing 95% confidence intervals.   
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Figure 3.24.  Field performance of the CWP2 filter over nine biweekly sampling points, 
assuming that 20 l per day per household (the mean reported by households) were treated.  
Points are arithmetic means with bars representing 95% confidence intervals.   
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CHAPTER 4:  POINT-OF-USE DRINKING WATER TREATMENT IN CAMBODIA: 
A RANDOMIZED, CONTROLLED TRIAL OF LOCALLY MADE CERAMIC 
FILTERS 
 
 
Abstract 

Household drinking water treatment has been shown to be an effective 

intervention to reduce diarrheal diseases in developing countries.  Improvements in 

household drinking water quality and associated health impacts of low-cost ceramic 

water filters, one promising technology for point-of-use water treatment, have not been 

adequately characterized.    A randomized, controlled intervention trial of two ceramic 

drinking water filters was conducted in the rural/peri-urban village of Prek Thmey, 

Cambodia.    Interventions were a locally-produced ceramic water purifier (CWP) as 

manufactured and implemented by the NGO Resource Development International (the 

CWP1) and a modified version of the filter with high iron oxide content (the CWP2).  

Major findings were that: (i), the use of either filter resulted in a significant decrease 

(>40%) in diarrheal disease during the study, an effect that was observed in all age 

groups and both sexes after controlling for clustering within households and within 

individuals over time; (ii), the CWP1 filter was associated with a substantial reduction in 

dysentery (61%), an effect that was not observed with the CWP2; and (iii), there was a 

positive but weak association between E. coli levels measured in drinking water and 

diarrheal disease outcomes.   
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4.1  Introduction 

4.1.1  Water quality and health 

An estimated 1.8 million people die every year from diarrheal diseases (WHO 

2004a).  The majority of the deaths are associated with diarrhea among children under 5 

in developing countries, who are more susceptible to the effects of malnutrition, 

dehydration, or other secondary health effects associated with these infections.  Taken 

together, diarrheal diseases are the third highest cause of illness worldwide and the third 

highest cause of death in children worldwide.  These are manifested as various types of 

diarrheal illnesses, from acute syndromes such as cholera and dysentery to extended or 

chronic illnesses like hemolytic uremic syndrome and Brainerd diarrhea.  According to 

Cambodian national health statistics for the year 2000, the prevalence of childhood 

diarrhea (children aged 0-60 months) is 18.9%, based on a 14-day recall period.  

Prevalence in and around Phnom Penh is 24.4% (NIS 2000).  National data on diarrhea 

for older children and adults have not been collected, as children under 5 years represent 

the most at-risk group and therefore have been the focus of surveys.   There were an 

estimated 309,933 reported cases of diarrhea (including dysentery) in Cambodia in 2000, 

out of a population of approximately 13 million (WHO 2004a).  Data on diarrheal disease 

morbidity and mortality is often underreported, however, so the true diarrheal disease 

burden in Cambodia could be appreciably higher. 

Prüss et al.  (2002) estimated that 4.0% of all deaths and 5.7% of the global 

disease burden are attributable to inadequate water, sanitation, and hygiene, largely due 

to diarrheal diseases.  An unknown percentage of the diarrheal disease burden is due 

solely to unsafe drinking water, because the viral, bacterial, and parasitic microbes 
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causing diarrheal disease may also be transmitted through contaminated food, hands, 

fomites, or other routes.  We do know, however, that water quality plays an important 

role in the risk of diarrheal diseases and access to safe water is a major determinant of 

diarrheal disease rates.  Diarrheagenic organisms generally originate in fecal matter and 

are transmitted through the fecal-oral route of infection (Curtis and Cairncross 2003).      

 

4.1.2  Cambodia and household water treatment 

Cambodia is the poorest and least developed country in Asia.  For the estimated 

66% of Cambodians without access to improved drinking water sources (NIS 2004) and 

the likely much greater percentage without consistent access to microbiologically safe 

water at the point of use, household-based water treatment can play a critical role in 

protecting users from waterborne disease.  Surface water in Cambodia is plentiful but 

often of very poor quality, due in part to inadequate or nonexistent sanitation in rural as 

well as urban areas.  Only 16% of Cambodians have access to adequate sanitation 

facilities (ibid.).  Some groundwater sources in the country are also known to contain 

high levels of naturally occurring arsenic and other chemical contaminants (Feldman et 

al.  2007; Polya et al.  2005).  Arsenic in the groundwater is an especially urgent problem 

in parts of the lower Mekong delta region where there is a high population density.  The 

first cases of arsenicosis in Cambodia were reported in August 2006, in Kandal province 

(Saray 2006).  Surface water and shallow groundwater (often of poor microbiological and 

aesthetic quality) and rainwater catchment sources (susceptible to contamination during 

storage) are the principal alternatives to arsenic-contaminated deep wells.  If efforts are 

made to direct Cambodians away from groundwaters contaminated with arsenic, there 
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may be increasing risks of waterborne diarrhea and other infectious diseases resulting 

from increased use of fecally contaminated surface waters and harvested rainwater. 

Due to the poor quality of available drinking water sources and the lack of 

centralized systems for delivering safe water to households, Cambodia has become a 

major locus for household water treatment research and implementation.  The reality for 

most Cambodians today is that they must collect water, store it for use in the household, 

and treat and protect it themselves if they are to have safe water.  An estimated 200,000 

people (1.5%) already use some form of filtration (sand or ceramic) or chemical 

treatment at the household level.  In addition, many more treat some or all household 

drinking water using coagulants, traditional cloth filters, or boiling. 

Waterborne diseases, in part due to degraded drinking water sources, are a serious 

public health issue in Cambodia.  Cholera, for example, is endemic in Cambodia, with a 

mean of more than 1000 cases reported per year throughout the country and major 

localized outbreaks reported in 1998 and 1999 (WHO 2006).   Diarrheal diseases are the 

number one cause of death and disease in children, with prevalence consistently around 

20% for a two-week recall period (NIS 2000).   

Previous studies document that household-based water treatment and safe storage 

can provide users with protection against waterborne pathogens where safe water sources 

and other treatment options are scarce.  Recent systematic reviews of field trials 

established that various household-scale water quality interventions can be effective in 

reducing the burden of diarrheal disease, with mean reductions of 39% - 44% in users 

versus non-users (Clasen et al.  2006b; Fewtrell et al.  2005).  Effective household water 

treatment processes that significantly reduce diarrheal disease include chemical 
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treatments such as chlorination and the use of combined chemical coagulation-

flocculation and chlorine disinfection treatments, exposure of water in clear plastic 

bottles to the UV radiation and heat of sunlight (e.g., the SODIS system), and various 

forms of filtration (Clasen et al.  2006b).  Commercially produced porous ceramic filters 

have been found to not only improve water quality at the point of use but also reduce 

diarrheal disease in randomized, controlled trials (Clasen et al.  2004; Clasen et al.  

2006a).  While studies have documented the performance of these household water 

treatment technologies for their ability to improve household water microbial quality and 

reduce diarrheal disease among users, other available technologies documented to be 

effective for microbial reductions have not been evaluated for their ability to reduce 

diarrheal disease among users. Such technologies include locally made porous ceramic 

filters and the biosand filter (an intermittently operated household-scale slow sand filter), 

both of which are widely promoted and used in Cambodia.   

 
4.1.3  Study overview 

 The ceramic water purifier (CWP) is an emerging water treatment device that is 

made locally in Cambodia and in several other developing countries based on a design 

originally developed in Latin America in the 1980s.    Field microbiological effectiveness 

data as well as health effects of the filters during field use were assessed in a randomized, 

controlled intervention trial.  One hundred eighty households in a rural/peri-urban 

Cambodian village were initially  recruited into the study with informed consent and 

initially followed for four weeks (two household visits) for the collection of baseline data 

related to water quality; family health; demographics and socio-economic status; and 

other water, sanitation, and hygiene (WSH)-related factors.  Then, households were 
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randomly assigned to one of three groups: those receiving the standard CWP (referred to 

here as the CWP1) as implemented by NGOs in Cambodia, those receiving a modified 

CWP (referred to as the CWP2) developed in our laboratory at UNC and fabricated in 

Cambodia by the same factory that made the CWP1, and a control group (no 

intervention).  Households were then followed for 18 weeks with biweekly visits (nine 

visits per household).  At each household visit, treated and untreated water samples were 

taken and analyzed for E. coli using membrane filtration and diarrheal disease and other 

health data were collected for all family members.  A variety of longitudinal water, 

sanitation, and hygiene data were collected as well using interviews with household 

members and by direct observation.  This study was approved by the Biomedical 

Institutional Review Board of the UNC Office of Human Research Ethics and the 

Cambodian Ministries of Health and Rural Development. 

Stratified analyses and log-risk regression with Poisson extension of generalized 

estimating equations (GEE) were employed in analysis of water quality and health impact 

data to assess the interventions' effectiveness against diarrheal disease in the study group.     

 

4.2  Purpose and objectives 

The purpose of this study was to evaluate the health impacts of the CWP1 and 

CWP2 filters in field use in a Cambodian village.  Reduction of diarrheal disease in 

children under five years of age was the principal outcome of interest.   The study 

hypothesis was that in households using the ceramic filters (of either type), diarrheal 

disease in the intervention cohort (using filter interventions) would be ≥20% less than in 

control households (without access to a filter) based on longitudinal prevalence and 
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incidence measures.  The bases for this detectable level of diarrhea reduction were the 

meta-analyses by Fewtrell et al.  (2005) and Clasen et al.  (2006b, 2007), which conclude 

that POU water quality interventions can substantially reduce diarrheal disease in users 

versus non-users, by a mean of approximately 30 - 40%.   

 

The specific objectives of this study were to:  

• assess impacts of the two filters on diarrheal disease (including dysentery) in 

households using them against a control group;  

• determine whether important differences exist in the diarrheal disease impact of 

the two filters;  

• examine other water, sanitation, and hygiene-related factors and their impact on 

diarrheal disease; and 

• examine the relationship between household water quality and diarrheal disease 

(including dysentery) in all households. 

 

4.3  Methods and materials 

4.3.1  The intervention filters 

This study examines the field effectiveness of two filters: that manufactured and 

promoted in Cambodia by Resources Development International (RDI) in Kandal 

Province beginning in December 2003 (the CWP1) and a modified version of the same 

using goethite-amended base clay (CWP2).  This study assesses water quality (with 

microbiological quality and turbidity as exposure variables) and health impacts (based on 
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diarrhea and dysentery as outcome variables) of these interventions over eighteen weeks 

in situ.   

 The ceramic water purifier manufactured by RDI (CWP1) is a porous ceramic 

pot-style filter based on the ICAITI model promoted by Potters for Peace.   The filters 

have been made in Kandal Province at a central factory since 2002.  Raw clay is milled 

and mixed with ground rice husks, press molded, and fired to cone 012 (~870oC) in a 

large kiln using scrap wood pieces as fuel.  After flow testing (a quality control step) to 

ensure that the flow rate is in the proper range to indicate target pore size and structure 

(1-3 l per hour), the porous filters are painted with a 0.00215 molar reagent-grade 

(99.999%) AgNO3 solution intended to inhibit microbial growth on the filter.  

Approximately 300 ml are applied to each filter: 200 ml on the inside (46 mg Ag) and 

100 ml on the outside of the filter (23 mg Ag).   

The CWP2 is a modified version of the RDI (CWP1) filter that contains a higher 

percentage of iron oxide-rich clay (1:6 FeOOH:base clay by dry weight), based on 

prototype testing that suggested greater effectiveness of these filters against viruses 

(geometric mean >99.99%) in initial testing over limited volumes of spiked challenge 

waters.  Other details of manufacture are identical to the standard filter.  The CWP2 is 

also coated with a silver nitrate solution by the same method as the CWP1.     

 

4.3.3  Study site 

All households were located in Prek Thmey village, Kandal Province, Cambodia, 

approximately 10km from Phnom Penh along the Bassac river.  The wastewater from 

Phnom Penh flows into the Bassac river approximately four kilometers upstream of the 
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study area.  Surface water, including heavily impacted Bassac river water, is the principal 

source of drinking water in this community.  Rain water harvesting is also practiced when 

possible, which is primarily during the rainy season.  

 

4.3.4  Study population and selection of households 

The study population consisted of all households in the peri-urban/rural village of 

Prek Thmey, Cambodia.  GPS coordinates or other locating details were obtained for all 

village households, and households were selected at random using a random numbers 

table.  Three hundred (300) households were randomly selected to be approached by the 

study team to assess eligibility for the study.  Inclusion criteria for the study were that 

households (i) were willing to voluntarily participate, (ii) are in the village of Prek 

Thmey as defined in the initial survey, (iii) store water in the home, (iv) have a child of 

less than 5 years of age as a household member at the first household visit, and (v) did 

not use commercial bottled water as the primary source of household potable water.  

Exclusion criteria were: (i) unwillingness to participate, (ii) no child less than 5 years of 

age in the household at the time of the first household visit, (iii) primary or exclusive use 

of commercial bottled water as potable water in the home. 

Households were approached in cluster-randomized order (cluster size=10 

households) and eligible households were asked to enroll in the study.  Households were 

approached until 180 households were enrolled in the study via informed consent and in 

accordance with IRB approval from the University of North Carolina-Chapel Hill Office 

of Human Research Ethics and Cambodian Ministry of Health approval for ethical human 

research.  
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After a baseline data collection period of 4 weeks (two sampling rounds for all 

households), households were randomized to one of three treatment arms:  (i) those 

receiving the ceramic water purifier (referred to as "CWP1") as produced by Resource 

Development International (RDI), (ii) those receiving a CWP2 filter with metal oxide 

additive, also produced by RDI, and (iii) a control group receiving no filter.   

 

4.3.5  Inducements to participate   

All subject households were provided with gratis water filters (a CWP, as the 

more proven and established technology) and storage containers upon completion of the 

study (after all household interviews and water samples were collected) as part of their 

willingness to participate in the study, together with training on use and maintenance of 

the filter.  Households were also supplied with several packets of UNICEF soluble oral 

rehydration salts at each household visit, regardless of whether households reported 

diarrheal disease.   

 

4.3.6  A priori sample size and power calculations 

A demographic and health survey in the study village by RDI-Cambodia indicated 

that 41% of the population was under 16 years of age and that the baseline diarrheal 

disease prevalence for this group was 16%.  National statistics indicate that the 

prevalence of diarrhea in the Phnom Penh area for children under 5 is 24.4% (NIS 2000).  

Based on recent systematic reviews by Fewtrell et al.  (2005) and Clasen et al. (2006b), 

which found mean reductions in diarrheal disease resulting from household water quality 

interventions to be near 40%, we based our sample size calculation on the detection of a 
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longitudinal prevalence proportion ratio of 0.80 (that is, detection of a 20% reduction in 

longitudinal prevalence of diarrheal disease experienced by intervention and control 

groups).  This detectable difference of 20% is considered to be conservative, based on 

data published by International Development Enterprises – Cambodia (Roberts 2004), 

indicating that the CWP was associated with a 41% decrease in diarrhea among all users 

versus non-users (26% among women, 55% among men) in an initial study of the 

intervention.   

 The sample size for the study was computed as approximately 300 individuals (in 

each group) to detect a 20% difference in proportions between the study groups with 80% 

power and α = 0.05, using the methods for analysis of binary outcomes in multiple groups 

with repeated observations as described by Diggle et al.  (2002).  Calculations account 

for limited clustering within households and clustering in individuals over time, which 

are potentially important in the analysis of diarrheal disease data (Leon 2004; Killip et al.  

2004).  Results of power analyses in EpiSheet and EpiInfo were in general agreement 

with these results.   

 

4.3.7  Randomized controlled trial   

The randomized controlled trial consisted of 60 households in each of three 

groups: those using the CWP, those using the CWP2, and a control group (no filter).  

Participating households were visited eleven times for water sample collection and 

analyses altogether; nine of these visits were post-baseline (after randomization).  Data 

on water use and handling practices, sanitation and hygiene, and other potentially 
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important covariates were gathered during the baseline period and at each subsequent 

visit.  

 

4.3.8  Informed consent 

Informed consent was obtained from the appropriate family member.  This was 

the head of household (defined as the primary caretaker for the children, responsible for 

household work and either responsible for or knowledgeable of household water 

management practices, usually an adult female) who acted as the main correspondent for 

the home in subsequent visits.  This person was identified by asking to speak with the 

person who is the primary care taker and in charge of household responsibilities such as 

water management, cooking, cleaning, etc.  The consent form was translated into Khmer 

and then back translated into English, and piloted to ensure clarity before use in the field.  

Subjects read or were read the form in Khmer by project staff.  Participating 

householders were presented with a narrative description of the project (both written and 

orally) and asked to participate in the study entailing up to eleven (11) household visits 

by the project team.  Participants then signed the consent form, representing consent for 

all of the persons in the house.  This project and its means for obtaining informed consent 

from participants were reviewed and approved by the Biomedical Institutional Review 

Board on Research Involving Human Subjects, Office of Human Research Ethics, The 

University of North Carolina at Chapel Hill, USA, and the Ministry of Rural 

Development, Kingdom of Cambodia. 
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4.3.9  Data collection 

All survey instruments were prepared in both English and Khmer prior to use in the 

study. They were pre-structured and pre-tested (by back-translation from Khmer to 

English and use in pilot interviews).  The project manager, project coordinator, and health 

specialist took responsibility for preparing all survey instruments.  Surveys used simple, 

straightforward language with predominantly closed (multiple choice) questions.   

The data collection (field) team was composed of four interviewers who were 

native speakers of Khmer and had related experience in community health data collection 

in the study area.  During the months of June to October 2006, the data collection team 

visited participating households eleven times (bi-weekly, four week baseline period and 

eighteen week intervention period).  The primary caregiver was asked to provide a 7-day 

binary recall of diarrheal disease for herself and all members of the household.  Diarrhea 

was defined as three or more loose or watery stools in a 24-hour period   Diarrhea with 

blood indicated dysentery.  Discrete cases or case duration data were not collected.    

 

4.3.9.1  Data entry and management  

Survey data were collected via verbally administered questionnaires and recorded 

onto hard copy data sheets. Households and individuals were assigned a unique code 

number as an identifier.  During sample collection, household surveys and water samples 

were identified by the unique household code number assigned by the data collection 

team.  Data were collected and original data sheets were stored at the laboratory office in 

bound notebooks in a locked cabinet with access only to specifically authorized project 

staff.  Surveys and water quality data were entered into a Microsoft Excel spreadsheet or 
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Microsoft Access database and copied into Stata version 8.1, excluding the direct 

personal identifiers of the study participants.  All data were entered twice by separate 

data entry staff and compared to minimize data entry mistakes.     

 

4.3.9.2  Water quality data 

Water samples of 250 ml volume were taken from each household in the study at 

each household visit  to measure concentrations of fecal indicator bacteria and turbidity 

in untreated and treated household drinking water.  Samples were kept cool and 

transported as soon as possible to the laboratory in Kien Svay, where analysis was 

performed as soon as possible, in all cases within 24 hours.  Total coliforms and 

Escherichia coli were quantified in water samples using membrane filtration (MF) 

followed by incubation on selective media for colony formation and reported as colony-

forming units (cfu) per 100 ml.  All samples were processed in duplicate using a 

minimum of two dilutions and positive and negative controls.  Households in the 

intervention group were sampled for two types of water: untreated, stored household 

water and treated water as it was delivered via the filter tap.  Samples from the control 

households were taken for analysis as well, and included their current drinking water and 

untreated water, if they used another water treatment method (e.g., boiling).  Turbidity of 

water samples was measured in triplicate using a turbidimeter (Hach Pocket®) and the 

average values reported as NTU.  pH of water samples also was measured in the 

laboratory using an electronic pH meter (Thermo Orion 290A+).   

 



 

 

124

124

4.3.9.3  Other exposure variables 

In addition to the household data collected on health and water quality, additional 

data on potential covariates were collected during household visits.  Questions were 

asked to determine compliance with the household water intervention (water acquisition, 

treatment, storage, and use practices) and to document sanitation and hygiene conditions 

and practices.  The collected hygiene, sanitation, and water use data can be correlated 

with water quality and health data as potential covariates in the subsequent analysis.  A 

variety of socio-economic data were collected on each household as potential covariates 

in the analysis.  Observational data, such as presence of soap in the home, data on types 

and numbers of water storage containers, details on family filter use, presence of animals 

or animal waste in the home, were used to supplement and verify survey data collected in 

interviews.       

 

4.3.10  Analytical approach 

4.3.10.1  Exposures and outcomes 

Water quality, health, and other household data were initially used in stratified 

analyses to identify trends for key exposure and outcome variables.  Exposure variables 

of interest were presence of an intervention (CWP1 or CWP2), water quality measures 

including E. coli/100 ml in household drinking water, and other measured covariates 

related to water, sanitation, and hygiene.  Key outcome variables were diarrheal disease 

in all individuals and in children under five years of age (0-48 months at the first 

household visit).  Dysentery, or diarrhea with blood, was also measured for all 

individuals and was a subset of all diarrheal disease.     
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4.3.10.2  Regression and confounding 

Regression models were used to analyze diarrheal disease (bloody diarrhea and all 

diarrhea) prevalence proportions by exposure status.  Potentially confounding variables in 

the analytical model were (i) those that affect the exposure in the study population (e.g., 

factors associated with continued use of the filter); and (ii) those that are risk factors for 

the outcome of diarrheal disease in the control group (Last 2001).  Confounders were 

identified based on an a priori change-in-effect criterion of 10%.  Stratified and adjusted 

pooled estimates for health effect measures were reported.    All analyses were performed 

in Stata Version 8.1 (StataCorp, College Station, TX).   

 

4.3.10.3  Effect measure estimation for outcomes 

Stratified analyses and log-risk regression with Poisson extension of generalized 

estimating equations (GEE) were employed in analysis of time series data to determine 

the effect of the interventions and water quality in the home on diarrheal disease (both 

bloody and non-bloody diarrhea) as described below.  Prevalence proportion ratios for 

diarrheal disease based on a 7-day recall period among members of households with 

(intervention) and without (non-intervention or control) filters were used as the main 

outcome; analyses were performed using each intervention against the control group.  

Incidence rate ratios were also estimated from the prevalence proportion ratios based on 

case frequency and duration assumptions as described below.     
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4.3.10.4  Generalized estimating equations 

To control for clustering of the outcomes within households and within 

individuals over time, a Poisson extension of generalized estimating equations (GEE) was 

employed in log-linear regression.  GEE methods for analyzing binary outcomes over 

multiple time points were first described by Zeger and Liang (1986) and Liang and Zeger 

(1986).  The model uses the marginal expectation (average response for observations 

with the same covariates) as a function of covariates in the analysis; correlation between 

individual observations is computed via a variance estimation term.  The GEE model 

assumed that missing observations are Missing Completely at Random (MCAR) as 

described by Little and Rubin (2002): that the probability of an observation being missing 

is not related to measured or unmeasured cofactors that may be related to the exposure or 

the outcome.  The GEE model and its application to binary longitudinal data accounting 

for correlation is fully described by Diggle et al.  (2002).   

 

4.3.10.5  Longitudinal prevalence proportion ratios 

The measure of diarrheal disease risk in this study was the longitudinal prevalence 

ratio, the proportion of total observed time with the disease outcome in individuals.   The 

mean longitudinal prevalence for the group is also the proportion of time with the 

outcome divided by the total observed time, if all group members are followed for an 

equal number of days (Schmidt et al. 2007).  Because not all individuals were followed 

for the same amount of time in this open cohort due to missing observations, loss to 

follow up, death, and birth, longitudinal prevalence for individuals whose records 

comprised less than the 63 days of post-baseline observation were computed on a 
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weighted basis.  Because a seven day recall period was used at each household visit and 

no data were collected on case duration or frequency, the longitudinal prevalence 

calculation for individuals had a resolution of seven days.   

 Longitudinal prevalence is a diarrheal morbidity measure that has been shown to 

be strongly correlated with risk of mortality in children under 5 years of age (Morris et al. 

1996; Schmidt et al. 2007).  Longitudinal prevalence may be better correlated with 

nutritional status than incidence measures (Morris et al. 1996; Schmidt et al. 2007).  

Longitudinal prevalence measures also possess practical and analytical advantages over 

incidence measures, since case frequency and duration data (often difficult to obtain) are 

not collected (ibid.; Baqui et al. 1991; Morris et al. 1994).  For these reasons, an 

increasing number of studies incorporate this measure in intervention trials (e.g., Chiller 

et al. 2006; Crump et al. 2004a, 2004b; Luby et al. 2006).   

The analytical model produces estimations of longitudinal prevalence proportions 

that are computed from binary recall data. Estimates for longitudinal prevalence were 

adjusted for clustering within households and in individuals over time using a Poisson 

extension of Generalized Estimating Equations (GEE) as described previously.  The 

prevalence proportion ratio (PPR) was then computed as the diarrheal prevalence 

proportion in this intervention group divided by the prevalence proportion in the control 

group.   

 

4.3.10.6  Incidence rate ratios 

Incidence rate ratios were also estimated for outcomes of diarrheal disease and 

diarrheal disease with blood based on assumed case durations of three days for acute 
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diarrheal disease and seven days for bloody diarrhea and one case per seven day period 

for either outcome.  Person time at risk was then computed as four days if an episode of 

diarrheal disease was reported, zero days if a case of bloody diarrheal disease was 

reported, and seven days if no cases were reported for that seven day period.  Computed 

incidence rate ratios based on these assumptions and prevalence proportion ratios were 

close approximations of the other. 

 

4.4  Results 

4.4.1  Study participants and households   

Demographic and other characteristics of the households included in the 

longitudinal study are presented in Table 4.1, by study group.   One hundred eighty (180) 

households participated in the study, with a total of 1196 people (mean household size: 

6.6, median age: 19, range: 0-105 years at the time of first household visit.  Because 

having a child ≤5 years of age was a longitudinal study inclusion criterion for 

households, the age distribution in the three groups may not be representative of the 

source population in the study village; 249 individuals (21%) were children under age 5 

at the start of the study.  Four households (2%) were lost to follow up, two in each 

intervention group.   

 

4.4.2  Data stratified by study group   

The CWP1 intervention group contained 60 households and 395 individuals (6.58 

people per household, 53% female, 22% under the age of five at the start of follow-up).    

Respondents were asked more detailed questions about socioeconomic factors (including 
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a direct estimate of monthly household income) and education for the primary caregiver 

in the household.  Reported total household income in 5 (8% of) households was <$50, in 

16 (27% of) households $50-$99, in 24 (41% of) households $100-$149, and in the 

remaining 14 households (24%) ≥$150.  One household (2%) declined to answer.  

Education levels for the primary caregiver (usually an adult female) in the CWP 

intervention group were reported as: 13 (22%) had no formal schooling, 38 (63%) had 

some or all primary school, 6 (10%) had some or all secondary school, and 3 (5%) had 

post-secondary or vocational training.   

 The CWP2 intervention group contained 60 households and 398 individuals (6.63 

people per household, 53% female, 20% under the age of five).    Respondents were 

asked more detailed questions about socioeconomic factors (including a direct estimate of 

monthly household income) and education for the primary caregiver in the household.  

Reported total household income in 10 (17% of) households was <$50, in 21 (36% of) 

households $50-$99, in 18 (31% of) households $100-$149, and in the remaining 10 

households (17%) ≥$150.  One household (2%) declined to answer.  Education levels for 

the primary caregiver (usually an adult female) in the CWP2 intervention group were 

reported as: 10 (17%) had no formal schooling, 28 (47%) had some or all primary school, 

22 (37%) had some or all secondary school, and none had post-secondary or vocational 

training.   

 The control group (without filters) contained 60 households and 403 individuals 

(6.72 people per household, 52% female, 20% under the age of five).    Respondents were 

asked more detailed questions about socioeconomic factors (including a direct estimate of 

monthly household income) and education for the primary caregiver in the household.  
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Reported total household income in 5 (8% of) households was <$50, in 25 (42% of) 

households $50-$99, in 18 (30% of) households $100-$149, and in the remaining 12 

households (20%) ≥$150.  Education levels for the primary caregiver (usually an adult 

female) in the control group were reported as: 15 (25%) had no formal schooling, 27 

(45%) had some or all primary school, 17 (28%) had some or all secondary school, and 1 

(2%) had post-secondary or vocational training.   
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4.4.3  Water use and handling practices: baseline   

All households were asked about water use and handling practices both as part of 

baseline data collection and in subsequent household visits; baseline data are given here.  

CWP1 intervention households were asked about water use and handling practices, 

hygiene and sanitation, and other potentially important covariates.  Results are presented 

in Table 4.1.  The study spanned both dry and wet periods (June – October 2006).  When 

water is more available (wet season), 33 households (55%) reported using surface water 

(lake, pond, river, stream, prek, boeng, or canal) as a primary source of drinking water; 

26 (43%) reported use of a deep well (defined here as ≥10m in depth); 1 (2%) used a 

shallow well; and 44 (73%) used stored rainwater.  When water is less available (dry 

season), 37 households (62%) reported using surface water (lake, pond, river, stream, 

prek, boeng, or canal) as a primary source of drinking water; 27 (45%) reported use of a 

deep well (defined here as ≥10m in depth); none used a shallow well; and 2 (3%) used 

stored rainwater from the previous rainy period.  Twenty-eight (47%) used one or more 

uncovered water storage containers.  Respondents were asked to demonstrate to the 

interviewer the usual method of collecting water from the container for drinking; 36 

(60%) of respondents dipped hands or a cup directly into the container, while 24 (40%) 

used a tap or a dipper which was then poured out into a cup for drinking.   

 CWP2 intervention household data are presented in Table 4.1.  When water is 

more available (wet season), 31 CWP intervention households (52%) reported using 

surface water (lake, pond, river, stream, prek, boeng, or canal) as a primary source of 

drinking water; 28 (47%) reported use of a deep well (defined here as ≥10m in depth); 

none used a shallow well; and 39 (67%) used stored rainwater.  When water is less 
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available (dry season), 31 CWP2 intervention households (52%) reported using surface 

water (lake, pond, river, stream, prek, boeng, or canal) as a primary source of drinking 

water; 30 (50%) reported use of a deep well (defined here as ≥10m in depth); none used a 

shallow well; and none used stored rainwater.  Twenty-seven (45%) used one or more 

uncovered water storage containers.  Respondents were asked to demonstrate to the 

interviewer the usual method of collecting water from the container for drinking; 20 

(33%) of respondents dipped hands or a cup directly into the container, while 40 (67%) 

used a tap or a dipper which was then poured out into a cup for drinking.   

Control household (without filters) data on water use and handling are presented 

in Table 4.1.  When water is more available (wet season), 27 control households (45%) 

reported using surface water (lake, pond, river, stream, prek, boeng, or canal) as a 

primary source of drinking water; 29 (48%) reported use of a deep well (defined here as 

≥10m in depth); none used a shallow well; and 44 (73%) used stored rainwater.  When 

water is less available (dry season), 33 control households (55%) reported using surface 

water (lake, pond, river, stream, prek, boeng, or canal) as a primary source of drinking 

water; 29 (48%) reported use of a deep well (defined here as ≥10m in depth); none used a 

shallow well; and 1 (2%) used stored rainwater from the previous rainy period.  Twenty-

six (43%) used one or more uncovered water storage containers.  Respondents were 

asked to demonstrate to the interviewer the usual method of collecting water from the 

container for drinking; 27 (45%) of respondents dipped hands or a cup directly into the 

container, while 23 (38%) used a tap or a dipper which was then poured out into a cup for 

drinking.   
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4.4.4  Sanitation and hygiene practices: baseline 

Of the 60 households in the CWP1 intervention group, 31 (52%) had access to 

sanitation (either the household’s own or a shared latrine).  None of the households was 

connected to a conventional sewerage system.  Respondents were asked whether and how 

often they and members of their family washed their hands, for example after defecating 

and before preparing food.  Of the 60 households, 32 (53%) of respondents indicated that 

hand washing was practiced by all members of the household “always” at critical points 

with soap and water.  Respondents were also asked to demonstrate that there was soap in 

the household at the time of the visit; 50 CWP intervention households (83%) were able 

to produce it.   

Of the 60 households in the CWP2 intervention group, 31 (52%) had access to 

sanitation (either the household’s own or a shared latrine).  None of the households were 

connected to a conventional sewerage system.  Respondents were asked whether and how 

often they and members of their family washed their hands, for example after defecating 

and before preparing food.  Of the 60 households, 32 (53%) of respondents indicated that 

hand washing was practiced by all members of the household “always” at critical points 

with soap and water.  Respondents were also asked to demonstrate that there was soap in 

the household at the time of the visit; 52 CWP2 intervention households (87%) were able 

to produce it.   

Of the 80 households in the control group, 33 (56%) had access to sanitation 

(either the household’s own or a shared latrine).  None of the households were connected 

to a conventional sewerage system.  Respondents were also asked whether and how often 

they and members of their family washed their hands, for example after defecating and 
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before preparing food.  Of 80 household respondents, 35 (58%) indicated that hand 

washing was practiced by all members of the household “always” at critical points with 

soap and water.  Respondents were also asked to demonstrate that there was soap in the 

household at the time of the visit; 50 control households (83%) were able to produce it.   

 

4.4.5  Water quality data  

Filters were able to supply high quality (low risk) drinking water to users: 59% of 

CWP1 filter effluent samples were under 10 E. coli/100 ml, with 40% of samples having 

<1 E. coli detected in 100 ml samples.  Sixty-two percent (62%) of CWP2 filter effluent 

samples were under 10 E. coli/100 ml, with 37% of samples having <1 E. coli detected in 

100 ml samples.  Eighty-five percent (85%) of household drinking water samples from 

control households were considered “high risk” (≥101 cfu/100 ml E. coli) versus 20% of 

samples from CWP1 intervention households (Table 4.8) and 21% of CWP2 intervention 

households.  A summary of means of E. coli and turbidity counts in intervention and 

control household samples (both treated and untreated water) is presented in Table 4.9.   

While filtrate water quality samples are useful in assessing waterborne microbial 

exposures, filter-treated water sample data are not necessarily indicative of filter 

performance, defined as a measurable reduction in microbes in water attributable to filter 

use.  This is because untreated water may already be of high quality, or because the 

indicator concentration in untreated water is so high that the filter could perform 

admirably well and still have detectable indicator bacteria levels in samples of treated 

water.  Performance is more meaningfully evaluated via examination of log10 reduction 

values (LRVs) (Chapter 3).     



 

 

135

135

4.4.6  Diarrheal disease  

4.4.6.1  Effects of filter interventions on diarrheal disease 

Reduction of all diarrheal disease and dysentery by surveillance point and study 

group are presented in Table 4.2 (all diarrheal illness) and Table 4.3 (dysentery), with 

adjusted estimates of effect presented in Tables 4.4 and 4.5 (CWP1) and Tables 4.6 and 

4.7 (CWP2).   A clear negative association in diarrheal disease prevalence was observed 

in intervention (CWP1 and CWP2) households compared to control (non-filter) 

households, in all age groups and both sexes (Tables 4.4 and 4.5).  The adjusted 

longitudinal prevalence proportion ratio (PPR) effect estimate for the CWP1 in all ages 

was 0.51 (95% CI: 0.41-0.63), corresponding to a reduction in diarrheal disease of 49%, 

controlling for clustering within households and within individuals over time.  The 

adjusted prevalence proportion ratio (PPR) for the CWP2 in all ages was 0.58 (95% CI: 

0.47-0.71), corresponding to a reduction in diarrheal disease of 42%, controlling for 

clustering within households and within individuals over time.  Among children under 

five years of age (0-48 months at the first household visit), prevalence proportion ratios 

were 0.58 (95%CI: 0.41 – 0.82) for the CWP1 and 0.65 (95% CI: 0.46 – 0.93) for the 

CWP2.  Differences between filters CWP1 and CWP2 were not statistically significant as 

determined by a two sample mean comparison (t) test at α = 0.05 (P < 0.05) of prevalence 

proportion ratios.    

Associations between dysentery (diarrheal disease with blood) and use of the 

interventions were less consistent than for all diarrheal disease (Tables 4.6 and 4.7).  The 

adjusted longitudinal prevalence proportion ratio (PPR) effect estimate for the CWP1 in 

all ages was 0.39 (95% CI: 0.20-0.77), corresponding to a reduction in dysentery of 61%, 
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controlling for clustering within households and within individuals over time.  This 

suggests a protective effect by the filter on dysentery.  However, the adjusted prevalence 

proportion ratio (PPR) effect estimate for the CWP2 in all ages was 0.95 (95% CI: 0.55-

1.7), when controlling for clustering within households and within individuals over time.  

The association between dysentery and use of the CWP1 was significantly greater (p = 

0.0016) than that between use of the CWP2 and dysentery as determined by a two sample 

mean comparison (t) test at α = 0.05.  Among children under five years of age (0-48 

months at the first household visit), the prevalence proportion ratio for the association 

between CWP1 intervention use and dysentery was 0.27 (95%CI: 0.091 – 0.85), 

indicating a protective effect of the filter on the outcome of dysentery. The prevalence 

proportion ratio for the association between CWP2 intervention use and dysentery was 

0.82 (95% CI: 0.35 – 1.9), a difference of effect at the margin of significance (p = 

0.0532), as determined by a two sample mean comparison (t) test at α = 0.05.    

 Overall, both filter interventions appeared to have a protective effect against risks 

of diarrheal disease, based on risk ratios and their 95% confidence intervals generally 

excluding the null (<1.0).  The exceptions were for the effects of the CWP2 on risks of 

dysentery, for which the prevalence proportion ratios were not significantly below the 

null.    
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4.4.6.2  Diarrheal disease and water quality 

Diarrheal disease (all, 7 day recall) and diarrheal disease with blood (dysentery, 7 

day recall) was also examined as an outcome with water quality (E. coli cfu/100 ml) as 

the exposure variable.  There was a positive association between reported diarrhea and 

increasing levels of E. coli, although this association was not strong nor did the effect 

increase with concentration.  Estimates were adjusted for clustering within households.  

No other confounding variables were identified based on a 10% change-in-effect criterion 

for adjustment, including presence of a CWP1 or CWP2.   

Results of log-risk regression are presented in Tables 4.10 and 4.11 for all 

diarrhea and dysentery, respectively.  No difference was observed between diarrheal 

disease or dysentery for those having <1 E. coli cfu/100 ml in household drinking water 

and households having 1-10 E. coli (cfu) in 100 ml samples.  Small, non-linear, but 

statistically significant increases in diarrheal disease were observed within strata of 11-

100 E. coli cfu/100 ml, 101-1000 E. coli cfu/100 ml, and 1001+ E. coli cfu/100 ml.   

      

4.4.6.3  Other associations  

Measured covariates were examined for possible independent associations with 

diarrheal disease after controlling for the presence of the intervention (CWP1 or CWP2) 

and clustering within individuals over time and within households.  Results are presented 

in Figures 4.2 -  4.5.  Factors associated with decreased diarrheal disease were living in a 

household with greater than or the mean number of people (7+) (PPR = 0.71, 95% CI 

0.60-0.84); the caregiver reporting handwashing at critical points such as after defecating, 

after cleaning a child, and before preparing food (PPR = 0.77, 95% CI 0.65 – 0.92); the 
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home having a tile roof (a positive wealth indicator) (PPR = 0.69, 95% CI 0.55 – 0.86); 

and having an uncovered household water storage container (PPR = 0.77, 95% CI 0.68 – 

0.87).  Factors associated with lower reported dysentery were having electricity (a 

positive wealth indicator) (PPR = 0.44, 95% CI 0.26 – 0.75); having access to sanitation, 

either a household's own or a shared latrine (PPR = 0.59, 95% CI 0.36 – 0.99);  living in a 

household with greater than or the mean number of people (7+) (PPR = 0.55, 95% CI 

0.34-0.91); and the caregiver reporting handwashing at critical points (PPR = 0.53, 95% 

CI 0.32 – 0.88).   

 Higher diarrheal disease was reported in those under five years of age (0-48 

months at the first study visit) (PPR = 2.1, 95% CI 1.8 – 2.5).  Factors associated with 

increased dysentery were having a female interviewee for the collection of health data 

(PPR = 3.11, 95% CI 1.3 – 7.4);  having a female caregiver (PPR = 4.1, 95% CI 1.1 – 

15); being under five years of age (PPR = 2.3, 95% CI 1.4 – 3.9); and having an 

uncovered storage container at the time of visit (PPR = 1.9, 95% CI 1.2 – 3.1).     

 

4.5  Discussion 

4.5.1  Water quality 

Water quality impacts of the intervention filters are presented in Chapter 3.  In 

this randomized controlled field trial to evaluate the performance of two versions of the  

ceramic pot filter, use of a CWP1 or CWP2 was associated with a substantial 

improvement in drinking water quality at the household level compared to a matched 

control group not using filters.  Both filters reduced E. coli in stored water (pre-treatment) 

by a mean 99% or 2 log10 (Chapter 3).  A small number of samples (4.9% of CWP1 
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samples, 5.0% of CWP2 samples) showed a greater concentration of E. coli in treated 

water than in stored (raw) water samples, possibly due to filter contamination during 

improper handling or cleaning practices.  The filter interventions were as effective 

against E. coli as boiling in household water management practice based on measured 

concentrations of E. coli in treated water and the differences in E. coli concentrations of 

treated and untreated household waters.  These findings suggest that both boiled and 

filtered waters probably get recontaminated due to unsafe storage of treated water 

(Chapter 3).  The CWP filter design does provide for safe storage in a closed container 

with treated water dispensed via a tap, but regular maintenance includes a cleaning step 

that may result in contamination of the filter element or container if cleaning involves the 

use of unsafe water or soiled cleaning cloths (Chapter 5).      

 

4.5.2  Diarrheal disease impacts 

4.5.2.1  Impacts of filters on diarrheal disease in study groups 

Use of the filters was also associated with a reduced diarrheal disease burden, 

with diarrheal disease longitudinal prevalence during the study being 49% and 42% in 

CWP1 and CWP2 households, respectively, of that in the control (non-filter) households 

(all ages).  A substantial reduction was also observed for bloody diarrhea through the use 

of a CWP1 (61%), an effect that was not observed among those using a CWP2. 

 Differences in health impacts between the filters were not significant for the 

outcome of all diarrheal disease but the CWP1 was significantly more protective of 

dysentery (p = 0.0016).  One explanation may be that, after filters had been constructed 

and implemented, some CWP2 filters were observed to have more variable ceramic pore 
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structure, as indicated by higher flow rates in prototype testing (data not shown).  Flow 

rates in the CWP2 filters were 2.5 – 3.0 l/hr versus 1.5 – 2.0 l/hr in the CWP1 when fully 

charged (10 l).  The range considered acceptable is 1.0 – 3.0 l/hr.  Because the CWP2 

filters used a different clay material than that normally used to make the filters (one with 

one part FeOOH per six parts dry clay, by weight), a loss of structural integrity may have 

occurred in these filters over time in use, as firing temperatures and conditions may have 

been suboptimal for the changed clay mixture.  More work on how iron-oxide or other 

amendments may change the pore size, structure, and flow rate of the filter after firing is 

warranted to ensure maximum effectiveness of modified filters against diarrheagenic 

pathogens potentially present in drinking water sources.  Further examination of the 

optimal flow conditions to maximize microbial reductions within user-acceptable flow 

rates would also be useful.   

  

4.5.2.2  Diarrheal disease and water quality 

There was a positive association observed between bacterial indicator levels and 

reported diarrheal disease, although the relationship was not strong or highly predicted by 

E. coli levels in the water. This lack of strong predictability of E. coli levels for diarrhea 

risks could be due to the inability of E. coli to reliably predict diarrheagenic pathogen 

levels in the water, changes in E. coli levels in water during storage or other factors we 

were unable to account for in this study.   The lack of predictability of waterborne 

diarrhea risks by levels of fecal indicator bacteria such as E. coli has been previously 

reported (Jensen et al.  2004; Moe et al.  1991). 
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The water quality parameters used in this study are known to vary by season and 

diurnally, so water quality data may not represent the average drinking water quality in 

use by the household, especially when estimated from single samples collected no more 

than weekly.  At best, these data represent a series of point estimates of E. coli in water 

across the community that can perhaps approximate levels of fecal contamination and 

waterborne pathogen concentrations across space and time.  For this reason, making clear 

associations between water quality data based on E. coli levels and the outcome of 

diarrheal illness may be tenuous at best.  Other recent studies have failed to explicitly 

observe this association.  A meta-analysis by Gundry et al.  (2004) concluded that there 

was no clear association between levels of indicator bacteria (E. coli, thermotolerant 

coliforms) and diarrhea in a systematic review of intervention trials.  Similarly, Moe et 

al.  (1991) found no relationship between diarrheal illness rates and good quality (<1 E. 

coli/100 ml) versus moderately contaminated water (2-100 E. coli/100 ml) in a field study 

from the Philippines.  It was only when E. coli levels in water were  above 100 cfu/100 

ml that increasing concentrations were associated with increasing risks of diarrheal 

disease.   

Possible explanations for these results are that (i), E. coli is not a sufficiently good 

indicator of waterborne diarrheal disease in the context of this study (dry season, stored 

household drinking water in rural Cambodia); (ii), that measured health impact data 

(diarrheal disease occurrence) are misleading due to a placebo effect of the filters (e.g., 

Hellard et al.  2001; Colford et al.  2002) and/or that drinking water may not be an 

important route of exposure to diarrheagenic pathogens in the population at the time of 

the study; (iii), that health data are biased due to recall (Boerma et al.  1991) or reporting 
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issues (Thomas and Neumann 1992); or that (iv), the measured E. coli concentration from 

the time of sampling is not representative of the drinking water quality consumed by all 

the household members during the previous 7 days.  The last point of representativeness 

of single water samples for 7 days of drinking water quality is particularly important, as 

water quality could vary greatly on a daily basis.  Despite these factors tending to obscure 

the relationship between the fecal bacterial indicator E. coli and reported diarrheal 

disease, a positive association was observed at higher levels of E. coli cfu/100 ml. 

 

4.5.2.3  Other associations 

After controlling for the presence of an intervention, it was possible to identify 

independent associations between measured covariates and diarrheal disease outcomes in 

the study population.  All estimates also controlled for clustering within households and 

within individuals over time.  Wealth indicators such as having a tile roof or electricity , 

handwashing, and sanitation were associated with less diarrheal disease.  Unexpectedly, 

having an uncovered water storage container at the time of the interview appeared both as 

a positive and negative indicator of diarrheal disease.       

 Having greater than the mean number of individuals in the household was 

associated with decreased diarrhea and decreased dysentery, possibly due to 

environmental health-related benefits associated with more combined wealth resources, 

although no clear associations between wealth, household size, and hygiene or other 

exposure indicators were observed.  Also having a female interviewee for the collection 

of health data and a female caregiver in the household were associated with higher 

reported dysentery.  These factors may be related to health data collection issues such as 
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decreased efficiency of health data collection in large households and in greater 

specificity of diarrheal disease data collected from females. 

 

4.5.3  Study limitations 

The study was limited by its short duration which did not account for seasonal 

effects, the lack of a placebo study arm, and inherent limitations of the analytical model.  

Other limitations were the relatively brief periods of observation used to estimate 

longitudinal prevalence and issues surrounding reliable recall of diarrheal disease cases.  

These are briefly discussed in the following sections.     

 

4.5.3.1  Seasonal effects 

Seasonal effects on diarrheal disease prevalence or microbiological water quality 

were not wholly accounted for in this study due to its limited duration.  The study period 

was unusually wet (Figure 4.1), and although data from relatively dry periods were 

included, there were insufficient dry-season data to present a stratified analysis by season.  

Water use practices, water treatment practices, diarrheal disease rates, and the presence of 

microbial pathogens and indicators in potential drinking water sources can vary greatly 

by season (Gleeson and Gray 1997).  In many tropical developing countries, diarrheal 

disease prevalence tends to peak during or after the rainy season.   The opposite may also 

be true in some countries where the dry season entails a shift away from the use of 

relatively safe rainwater to relatively unsafe surface water sources, or where water 

scarcity in the dry season is associated with decreased or less effective hygiene practices.   

Longitudinal studies that attempt to capture the protective effect of an intervention on 
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diarrheal disease are subject to possible effect measure modification by seasonal effects, 

resulting in potentially very different quantitative findings over the course of a year as 

environmental and other conditions change.   

 

4.5.3.2  Study design and blinding 

The principal limitation of this study was the lack of any placebo (sham) filter 

device, which was omitted due to a combination of practical and ethical concerns.  No 

blinded (placebo-controlled) intervention trials of household water treatment have shown 

significant health impacts (Clasen et al.  2006b), a fact that undermines the credibility of 

all unblinded trials.  Ethical considerations are often cited for the omission of a placebo 

control (ibid.; Emanuel and Miller 2001), due to (i)  problems with obtaining informed 

consent for blinded studies in marginalized, illiterate, or otherwise disadvantaged 

populations (Verástegui 2006; Hawkins 2006); (ii) the fact that the use of a placebo water 

treatment may undermine user compliance, which could influence the effectiveness of the 

intervention, since compliance and effectiveness may be correlated (Clasen et al.  2006b); 

and (iii) the possibility of undermining the trust that forms the basis of NGO interaction 

with communities. 

Clause 29 of the Declaration of Helsinki (World Medical Association 1964) 

forbids the use of placebos when effective treatment exists (Ferriman 2001).  Because 

implementers are often convinced that interventions are effective in reducing diarrheal 

disease in users, placebos for these devices may not be warranted under the Declaration 

of Helsinki.  Amendments to clause 29 in 2002 state that a placebo may be appropriate 

"where a prophylactic, diagnostic or therapeutic method is being investigated for a minor 
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condition and the patients who receive placebo will not be subject to any additional risk 

of serious or irreversible harm".  Because water treatment interventions may stimulate a 

change from usual practice that may be effective at reducing disease (e.g., the treatment 

of drinking water by boiling or some other method, using a less contaminated source of 

water that might be farther away) and because these changes could carry significant risk 

of harm to users, the use of placebos may be unethical in trials of water treatment devices 

under some circumstances.   

 

4.5.3.3  The analytical model 

The modeling of potentially repeating outcomes in individuals over time yields 

particular challenges (Rothman and Greenland 1998).  Apart from adjusting for clustering 

of the outcome in individuals over time, two other issues limit the methods used in this 

analysis.   

The first is that time-dependent covariates may affect and/or be affected by the 

study exposure.   Some covariates can influence the main exposure variable, and vice 

versa.  Controlling for covariates may be straightforward in certain cases, since methods 

for effect estimation generally assume that the exposure does not affect any stratifying 

covariate or regressor (ibid.).  But when covariates are allowed to vary over time, this is a 

possibility.  For example, in this study, the available water source on a given day 

(covariate), may affect a household's decision of whether to treat the water before 

consumption (the exposure).  Or whether or not the households have a filter (exposure) 

may influence the household's water storage and use practices (covariates) in the home.  

In these cases the covariate may be both a confounder and an intermediate, biasing 

estimates of effect (ibid.).   
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The second factor is that recurrent outcomes can confound results by affecting the 

exposure.  Outcomes can have effects on exposure, and nowhere is this more apparent 

than in the study of water and hygiene related diseases transmitted fecal-orally.  Current 

and traditional methods for the analysis of repeated measures data (such as GEE 

regression) do not account for the effects of outcomes on exposures, or of earlier 

outcomes on later ones (ibid.).   

 

4.5.3.4  Study duration and estimation of longitudinal prevalence 

More time allocated to follow-up will increase the accuracy of disease outcome 

estimates, but repeated household visits are often cost-prohibitive and may lead to study 

fatigue in participants (Schmidt et al. 2007).  Morris et al. (1998) recommend a period of 

72 days of observation time to reliably estimate the longitudinal diarrheal disease 

prevalence proportion in individuals (not groups).  In this study, the baseline phase 

comprised 14 days of observation and the intervention phase 63, with reduced resolution 

from the use of binary outcome coding for the 7 day follow-up period rather than data 

recorded on a daily basis.  So longitudinal prevalence proportions in individuals cannot 

be estimated using these data.  Group data, however, were the focus of this study.     

 

4.5.3.5  Diarrheal disease recall 

Recall periods of greater than 48 hours may lead to underreporting of cases 

(Schmidt et al. 2007; Alam et al. 1989; Boerma et al. 1991) although 7 day recall periods 

are common in practice (Clasen et al. 2007).  Logistic and resource limitations restricted 

the number of total household visits in this study, necessitating the use of 7 day recall to 
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capture sufficient time at risk for participants.  We assumed that an overall effect of recall 

time on case reporting would affect study groups equivalently, however, and so would 

not bias results based on differences in exposure status.   

  

4.6  Conclusions  

This study constitutes the first randomized, controlled trial of locally produced 

ceramic water filters for point-of-use drinking water treatment.  Major findings are 

summarized below.    

• The use of either filter resulted in a marked decrease in diarrheal disease during 

the study (49% reduction over the control group by use of the CWP1, 42% 

reduction by use of the CWP2), an effect that was observed in all age groups and 

both sexes after controlling for clustering within households and within 

individuals over time.   

• The CWP1 filter was associated with a substantial reduction in dysentery (61%), 

an effect that was not observed with the CWP2. 

• There was a positive but weak association between E. coli levels measured in 

drinking water and diarrheal disease outcomes.  
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Characteristic CWP1 group 

n=60 
CWP2 group 

n=60 
Control group 

n=60 
Total number of people in group 395 398 403 
Mean number of individuals per household 6.58 6.63 6.72 
Number (percent) female 211 (53%) 209 (53%) 211 (52%) 
Number (percent) children < 5 years of age 88 (22%) 81 (20%) 80 (20%) 
Number (percent) children 5-15 years of age 94 (24%) 90 (23%) 98 (24%) 
Soap present in householda 

   Yes 
   No 

 
50 (83%) 
10 (17%) 

 
52 (87%) 
8 (13%) 

 
50 (83%) 
10 (17%) 

Reported total household income 
(USD/month) 
   <$50 
   $50-$99 
   $100-$149 
   $150-$200 
   >$200 

 
5 (8%) 

16 (27%) 
24 (41%) 
13 (22%) 
1 (2%) 

 
10 (17%) 
21 (36%) 
18 (31%) 
7 (12%) 
3 (5%) 

 
5 (8%) 

25 (42%) 
18 (30%) 
11 (18%) 

1 (2%) 

Access to sanitationb 

   Yes 
   No 

 
31 (52%) 
29 (48%) 

 
31 (52%) 
29 (48%) 

 
33 (56%) 
26 (44%) 

Covered water storage container 

   Yes 
   No 

 
32 (53%) 
28 (47%) 

 
33 (55%) 
27 (45%) 

 
34 (57%) 
26 (43%) 

Wash hands with soap?d 

   Yes 
   No 

 
32 (53%) 
28 (47%) 

 
32 (53%) 
28 (47%) 

 
35 (58%) 
25 (42%) 

Primary drinking water sources: dry seasone 

   Surface water 
   Groundwater 
      Deep well (≥10m) 
      Shallow well 
   Rainwater 

 
37 (62%) 

 
27 (45%) 
0 (0%) 
2 (3%) 

 
31 (52%) 

 
30 (50%) 

0 (0%) 
0 (0%) 

 
33 (55%) 

 
29 (48%) 

0 (0%) 
1 (2%) 

Primary drinking water sources: wet seasone 

   Surface water 
   Groundwater 
      Deep well (≥10m) 
      Shallow well 
   Rainwater 

 
33 (55%) 

 
26 (43%) 
1 (2%) 

44 (73%) 

 
31 (52%) 

 
28 (47%) 

0 (0%) 
39 (65%) 

 
27 (45%) 

 
29 (48%) 

0 (0%) 
44 (73%) 

Observed method of drawing waterf 

   Use hands     
   Pour or tap 

 
36 (60%) 
24 (40%) 

 
20 (33%) 
40 (67%) 

 
27 (45%) 
23 (38%) 

Formal education level of primary caregiverg 

  None 
  Some or all primary school 
  Some or all secondary school 
  More than secondary (e.g., vocational)   

 
13 (22%) 
38 (63%) 
6 (10%) 
3 (5%) 

 
10 (17%) 
28 (47%) 
22 (37%) 

0 (0%) 

 
15 (25%) 
27 (45%) 
17 (28%) 

1 (2%) 
a.  Respondents were asked to demonstrate that soap was present in the household. 
b.  Shared or own latrine (any type).     
d.  Users who responded that they did wash hands “always” with soap at critical points such as after defecating.   
e.  Multiple answers possible.  Most of the study took place in the wet season.   
f.  Respondents were asked to demonstrate their usual method of gathering water from the storage container.  
g.  Usually an adult female who is responsible for child care. 

Table 4.1.  Characteristics of study groups.   
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Surveillance 
Point 

Group Longitudinal 
prevalence 
proportion 

Prevalence 
proportion 

ratio 

Cases Person-
days at 

riska 

Incidence 
rate 

Incidence rate 
ratio (95% CI) 

Adjusted PPR 
(95%CI) by 

GEEb 

1 All (baseline) 0.18  202 7094 0.029   
2 All (baseline) 0.18  208 7482 0.028   

Control 0.20  80 2497 0.032   
CWP1 0.12 0.60 45 2588 0.017 0.54 (0.37-0.79) 0.57 (0.39-0.81) 

3 

CWP2 0.094 0.47 36 2587 0.014 0.43 (0.28-0.65) 0.68 (0.56-0.82) 
Control 0.18  69 2537 0.027   
CWP1 0.094 0.52 37 2633 0.014 0.52 (0.34-0.78) 0.54 (0.36-0.80) 

4 

CWP2 0.10 0.56 40 2561 0.016 0.57 (0.38-0.86) 0.77 (0.63-0.94) 
Control 0.13  52 2595 0.020   
CWP1 0.08 0.62 31 2651 0.012 0.58 (0.36-0.93) 0.60 (0.38-0.93) 

5 

CWP2 0.11 0.85 42 2555 0.016 0.82 (0.53-1.3) 0.91 (0.74-1.1) 
Control 0.13  49 2576 0.019   
CWP1 0.07 0.54 26 2617 0.0099 0.52 (0.31-0.86) 0.54 (0.33-0.86) 

6 

CWP2 0.090 0.69 35 2618 0.013 0.70 (0.44-1.1) 0.85 (0.68-1.1) 
Control 0.10  41 2628 0.016   
CWP1 0.075 0.75 29 2608 0.011 0.71 (0.43-1.2) 0.72 (0.45-1.2) 

7 

CWP2 0.070 0.70 27 2614 0.010 0.66 (0.39-1.1) 0.82 (0.64-1.1) 
Control 0.14  52 2427 0.021   
CWP1 0.060 0.43 22 2517 0.0087 0.41 (0.24-0.68) 0.42 (0.26-0.70) 

8 

CWP2 0.064 0.46 24 2553 0.0094 0.44 (0.26-0.72) 0.67 (0.53-0.86) 
Control 0.17  63 2380 0.027   
CWP1 0.054 0.32 20 2530 0.0079 0.30 (0.17-0.50) 0.31 (0.19-0.52) 

9 

CWP2 0.070 0.41 26 2540 0.010 0.39 (0.23-0.62) 0.64 (0.51-0.80) 
Control 0.13  47 2372 0.020   
CWP1 0.060 0.46 22 2503 0.0088 0.44 (0.25-0.75) 0.46 (0.28-0.76) 

10 

CWP2 0.093 0.72 35 2534 0.014 0.70 (0.44-1.1) 0.84 (0.68-1.1) 
Control 0.12  45 2406 0.019   
CWP1 0.053 0.44 20 2572 0.0078 0.42 (0.23-0.72) 0.43 (0.25-0.73) 

11 

CWP2 0.11 0.92 38 2385 0.016 0.85 (0.54-1.3) 0.93 (0.75-1.2) 
a.  Cases were assigned a mean duration of 3 days; thus cases received 4 days of at-risk time during each seven day observation period.   
b.  Prevalence proportion ratio estimated via Poisson extension of Generalized Estimating Equations (GEE), adjusted for clustering within households.   

Table 4.2.  Summary of longitudinal data for diarrheal disease (all) by biweekly surveillance point. 
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Surveillance 
Point 

Group Longitudinal
prevalence 
proportion 

Prevalence 
proportion 

ratio 

Cases Person-
days at 

riska 

Incidence 
rate 

Incidence rate 
ratio (95% CI) 

Adjusted PPR 
(95%CI) by 

GEEb 

1 All (baseline) 0.018  20 7574 0.0026   
2 All (baseline) 0.016  18 7980 0.0023   

Control 0.013  5 2702 0.0019   
CWP1 0.0051 0.39 2 2709 0.00074 0.40 (0.038-2.4) 0.40 (0.078-2.1) 

3 

CWP2 0.013 1.0 5 2660 0.0019 1.0 (0.23-4.4) 1.0 (0.54-1.9) 
Control 0.0077  3 2723 0.0011   
CWP1 0.0026 0.34 1 2737 0.00037 0.33 (0.010-4.1) 0.33 (0.035-3.2) 

4 

CWP2 0.010 1.3 4 2653 0.0015 1.4 (0.23-9.3) 1.2 (0.55-2.5) 
Control 0.0076  3 2730 0.0011   
CWP1 0.0051 0.67 2 2730 0.00073 0.67 (0.06-5.8) 0.67 (0.11-4.0) 

5 

CWP2 0.018 2.4 7 2632 0.0027 2.4 (0.55-15) 1.6 (0.79-3.04) 
Control 0.010  4 2695 0.0015   
CWP1 0.0052 0.52 2 2681 0.00075 0.50 (0.056-3.5) 0.51 (0.093-2.8) 

6 

CWP2 0.013 1.3 5 2688 0.00189 1.3 (0.27-6.3) 1.1 (0.58-2.2) 
Control 0.0051  2 2737 0.00073   
CWP1 0.0026 0.51 1 2688 0.00037 0.51 (0.010-9.8) 0.51 (0.046-5.6) 

7 

CWP2 0.0078 1.5 3 2674 0.0011 1.5 (0.18-18) 1.2 (0.51-3.0) 
Control 0.024  9 2520 0.0036   
CWP1 0.0081 0.34 3 2562 0.0012 0.33 (0.057-1.3) 0.33 (0.090-1.2) 

8 

CWP2 0.0027 0.11 1 2618 0.00038 0.11 (0.0020-0.77) 0.33 (0.12-0.93) 
Control 0.0082  3 2548 0.0012   
CWP1 0.0081 0.99 3 2562 0.0012 0.99 (0.13-7.4) 0.99 (0.20-4.9) 

9 

CWP2 0.0053 0.65 2 2611 0.00077 0.65 (0.054-5.7) 0.81 (0.33-2.0) 
Control 0.017  6 2471 0.0024   
CWP1 0.0027 0.16 1 2562 0.00039 0.16 (0.0030-1.3) 0.16 (0.020-1.4) 

10 

CWP2 0.013 0.76 5 2604 0.0019 0.79 (0.19-3.1) 0.89 (0.49-1.6) 
Control 0.019  7 2492 0.0028   
CWP1 0.0027 0.14 1 2625 0.00038 0.14 (0.0030-1.1) 0.14 (0.017-1.1) 

11 

CWP2 0.017 0.89 6 2457 0.0024 0.87 (0.24-3.0) 0.93 (0.54-1.6) 
a.  Cases were assigned a mean duration of 7 days; thus cases received 0 days of at-risk time during each seven day observation period.   
b.  Prevalence proportion ratio estimated via Poisson extension of Generalized Estimating Equations (GEE), adjusted for clustering within households.   

Table 4.3.  Summary of longitudinal data for dysentery (diarrheal disease with blood) by biweekly surveillance point.     



 

 

151

151

 
 Mean diarrheal disease prevalence proportion over 18 

week intervention perioda 
Incidence rate ratio 

(IRR)b 
(95% CIc) 

Prevalence proportion 
ratio (PPR)d 

(95% CI) 
 Control  Intervention (CWP1)   
All persons 0.15 0.074 0.57 (0.50-0.65) 0.51 (0.41-0.63) 
Agee 

  <5 years 
  5-15 years   
  ≥16 years 

 
0.23 
0.13 
0.12 

 
0.14 
0.079 
0.045 

 
0.67 (0.54-0.83) 
0.63 (0.48-0.83) 
0.44 (0.35-0.54) 

 
0.58 (0.41-0.82) 
0.62 (0.43-0.90) 
0.37 (0.26-0.52) 

Sex 
  Male 
  Female 

 
0.12 
0.17 

 
0.076 
0.072 

 
0.65 (0.53-0.79) 
0.52 (0.43-0.61) 

 
0.61 (0.44-0.83) 
0.44 (0.33-0.58) 

a.  Nine sampling rounds, June-October 2006.  Figures represent the proportion of individuals reporting diarrhea in the previous 7 
days.   
b.  Assumed case duration of three days; individuals reporting cases in the previous seven days were assigned four days of person 
time at risk.     
c.  95% confidence interval.   
d.  This PPR was computed via log-linear Poisson extension of generalized estimating equations (GEE), adjusting for clustering of 
the outcome within households and within individuals over time.   
e. Age in years at the time of the first household visit. 

Table 4.4.  Diarrheal disease prevalence proportions and filter effect estimates (CWP1) by age and sex of individuals.   
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 Mean diarrheal disease prevalence proportion over 18 

week intervention perioda 
Incidence rate ratio 

(IRR)b 
(95% CIc) 

Prevalence proportion 
ratio (PPR)d 

(95% CI) 
 Control  Intervention (CWP2)    
All persons 0.15 0.090 0.69 (0.61-0.78) 0.58 (0.47-0.71) 
Agee 

  <5 years 
  5-15 years   
  ≥16 years 

 
0.24 
0.14 
0.13 

 
0.19 
0.078 
0.091 

 
0.75 (0.61-0.93) 
0.54 (0.40-0.71) 
0.70 (0.59-0.84) 

 
0.65 (0.46-0.93) 
0.48 (0.31-0.75) 
0.57 (0.42-0.76) 

Sex 
  Male 
  Female 

 
0.12 
0.17 

 
0.081 
0.096 

 
0.74 (0.61-0.89) 
0.65 (0.55-0.76) 

 
0.60 (0.43-0.83) 
0.57 (0.44-0.75) 

a.  Nine sampling rounds, June-October 2006.  Figures represent the proportion of individuals reporting diarrhea in the previous 7 
days.   
b.  Assumed case duration of three days; individuals reporting cases in the previous seven days were assigned four days of person 
time at risk.     
c.  95% confidence interval.   
d.  This PPR was computed via log-linear Poisson extension of generalized estimating equations (GEE), adjusting for clustering of 
the outcome within households and within individuals over time.   
e. Age in years at the time of the first household visit. 

Table 4.5.  Diarrheal disease prevalence proportions and filter effect estimates (CWP2) by age and sex of individuals.  
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 Mean bloody diarrhea prevalence proportion over 18 

week intervention perioda 
Incidence rate ratio 

(IRR)b 
(95% CIc) 

Prevalence proportion 
ratio (PPR)d 

(95% CI) 
 Control  Intervention (CWP1)   
All persons 0.012 0.0047 0.43 (0.26-0.69) 0.39 (0.20-0.77) 
Agee 

 <5 years 
  5-15 years   
  ≥16 years 

 
0.025 
0.0082 
0.0095 

 
0.0079 
0.0061 
0.0027 

 
0.46 (0.21-0.96) 
0.69 (0.20-2.2) 
0.29 (0.12-0.66) 

 
0.27 (0.091-0.85) 
0.52 (0.10-2.7) 
0.29 (0.11-0.80) 

Sex 
  Male 
  Female 

 
0.0074 
0.017 

 
0.0044 
0.0049 

 
0.81 (0.41-1.6) 
0.37 (0.19-0.69) 

 
0.49 (0.17-1.5) 
0.31 (0.13-0.73) 

a.  Nine sampling rounds, June-October 2006.  Figures represent the proportion of individuals reporting diarrhea in the previous 7 
days.   
b Assumed case duration of seven days; individuals reporting cases in the previous seven days were assigned zero days of person 
time at risk.     
c.  95% confidence interval.   
d.  This PPR was computed via log-linear Poisson extension of generalized estimating equations (GEE), adjusting for clustering of 
the outcome within households and within individuals over time.   
e. Age in years at the time of the first household visit. 

Table 4.6.  Dysentery (diarrhea with blood) prevalence proportions and filter effect estimates (CWP1) by age and sex of individuals.   
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 Mean bloody diarrhea prevalence proportion over 18 

week intervention perioda 
Incidence rate ratio 

(IRR)b 
(95% CIc) 

Prevalence proportion 
ratio (PPR)d 

(95% CI) 
 Control  Intervention (CWP2)    
All persons 0.012 0.011 0.80 (0.54-1.2) 0.95 (0.55-1.7) 
Agee 

  <5 years 
  5-15 years   
  ≥16 years 

 
0.025 
0.0082 
0.0096 

 
0.017 
0.012 
0.0083 

 
0.71 (0.36-1.4) 
1.3 (0.50-3.6) 
0.70 (0.38-1.3) 

 
0.82 (0.35-1.9) 
1.5 (0.40-5.5) 
0.87 (0.37-2.0) 

Sex 
  Male 
  Female 

 
0.0074 
0.017 

 
0.0098 
0.012 

 
1.0 (0.55-2.0) 
0.67 (0.39-1.1) 

 
1.2 (0.50-2.9) 
0.68 (0.32-1.4) 

a.  Nine sampling rounds, June-October 2006.  Figures represent the proportion of individuals reporting diarrhea in the previous 7 
days.   
b.  Assumed case duration of seven days; individuals reporting cases in the previous seven days were assigned zero days of person 
time at risk.     
c.  95% confidence interval.   
d.  This PPR was computed via log-linear Poisson extension of generalized estimating equations (GEE), adjusting for clustering of 
the outcome within households and within individuals over time.   
e. Age in years at the time of the first household visit. 

Table 4.7.  Dysentery (diarrhea with blood) prevalence proportions and filter effect estimates (CWP2) by age and sex of individuals.   
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 Number (percentagea) of all samples by E. coli concentration of household drinking waterb  
 0 

(cfu/100 ml) 
1-10 

(cfu/100 ml) 
11-100 

(cfu/100 ml) 
101-1000 

(cfu/100 ml) 
1,001+ 

(cfu/100 ml) 
Total 

samplesc 
Control 
households 
 

6 (1%) 20 (3%) 65 (11%) 294 (49%) 221 (36%) 606 

CWP1 
 
 

243 (40%) 116 (19%) 121 (20%) 87 (14%) 37 (6%) 604 

CWP2 
 

228 (37%) 152(25%) 102 (17%) 79 (13%) 49 (8%) 610 

a.  Percentages within strata may not add up to 100% due to rounding.   
b.  Samples were filter effluent in intervention households, stored household drinking water for control households (including 
samples from treatment by boiling).  Households were asked to provide a sample of the water that the family was drinking at the 
time of visit.   
c.  Incomplete data for 54 (8%) control households, 56 (8%) for CWP1 households, and 50 (8%) for CWP2 households.   

Table 4.8.  Measured levels of E. coli (cfu/100 ml) in household drinking water by study group.   



 

 

156

156

 
 Water quality dataa, means (95% CIb) 

(untreated water) 
Water quality dataa, means (95% CIb) 

(treated water) 
 E.coli/100 ml Turbidity (NTU) E.coli/100 ml Turbidity (NTU) 
Control     
     Arithmetic 3000 (2500-3500) 10.8 (10.1-11.5) 120 (55-190) 8.18 (6.50-9.87) 
     Geometric 600 (570-640) 5.47 (5.32-5.63) 22 (15-33) 5.08 (4.53-5.70) 
CWP1     
     Arithmetic 3500 (3000-4000) 7.54 (7.12-7.96) 110 (46-170) 3.08 (2.70-3.46) 
     Geometric 520 (490-550) 4.81 (4.70-4.92) 17 (14-22) 2.41 (2.28-2.54) 
CWP2     
     Arithmetic 1800 (1500-2000) 8.71 (8.25-9.16) 110 (60-170) 3.08 (2.32-3.83) 
     Geometric 420 (400-450) 5.18 (5.05-5.31) 15 (12-18) 2.32 (2.20-2.44) 
a.  Data from intervention households, raw (untreated) water and filtered (treated water) samples from 9 sampling rounds.   
b.  95% confidence intervals. 

Table 4.9.  Mean E. coli counts (cfu/100 ml) and turbidity averages for samples taken in intervention households (untreated and 
treated water). 
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E. coli/100 ml in household 

drinking watera 
Stratum-specific risk estimate, 

all diarrheal diseaseb 
Prevalence proportion ratio 

(PPR)c 
95% CI 

 
<1 0.084 

 
1.0 (referent) 

. 

 
1-10 0.082 0.98 

 
0.81-1.2 

 
11-100 0.11 1.2 

 
1.1-1.3 

 
101-1000 0.15 1.2 

 
1.2-1.3 

 
1001+ 0.15 1.2 

 
1.1-1.2 

    
a.  Samples were filter effluent in intervention households, stored household drinking water for control households.  Households 
were asked to provide a sample of the water that the family was drinking at the time of visit.   
b.  Prevalence proportion of those reporting diarrheal diseases (all) within the previous 7 days.  Diarrhea was defined as 3 or more 
loose or watery stools within 24 hours.   
c.  Computed by log-linear Poisson extension of generalized estimating equations (GEE), adjusted for clustering within households.  
No other confounding variables were identified based on a 10% a priori change-in-estimate criterion, including presence of the 
intervention (CWP1 or CWP2).   

Table 4.10.  Stratum-specific risk estimates for levels of E. coli in household drinking water samples, diarrheal disease in last 7 days. 
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E. coli/100 ml in household 

drinking watera 
Stratum-specific risk estimate, 

bloody diarrheab 
Prevalence proportion ratio 

(PPR)c 
95% CI 

 
<1 0.0075 

1.0 (referent) . 

 
1-10 0.0056 0.75 

0.36-1.6 

 
11-100 0.014 1.4 

1.0-1.8 

 
101-1000 0.013 1.2 

1.0-1.4 

 
1001+ 0.015 1.2 

1.0-1.3 

    
a.  Samples were filter effluent in intervention households, stored household drinking water for control households.  Households 
were asked to provide a sample of the water that the family was drinking at the time of visit.   
b.  Prevalence proportion of those reporting diarrhea (with blood present in the stool) within the previous 7 days.  Diarrhea was 
defined as 3 or more loose or watery stools within 24 hours.   
c.  Computed by log-linear Poisson extension of generalized estimating equations (GEE), adjusted for clustering within households.  
No other confounding variables were identified based on a 10% a priori change-in-estimate criterion, including presence of the 
intervention (CWP1 or CWP2).   

Table 4.11.  Stratum-specific risk estimates for levels of E. coli in household drinking water samples, diarrheal disease with blood 
(dysentery) in last 7 days.  
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Figure 4.1.  Rainfall (mm) per month in 2006, from weather station at Resource Development International (RDI), located 
approximately 10km from Prek Thmey village.  The rainiest months are typically October and November, but May, June, July and 
August were especially rainy in 2006.  Values are extrapolated from available monthly data, which range from 31% to 100% 
complete.   
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Figure 4.2.  Association of measured covariates with diarrheal disease in all individuals, adjusted for presence of the intervention 
(CWP1 or CWP2) and for clustering within households and in individuals over time.  Points are arithmetic mean prevalence 
proportion ratios and bars represent 95% confidence intervals.     
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Figure 4.3.  Association of measured covariates with dysentery in all individuals, adjusted for presence of the intervention (CWP1 or 
CWP2) and for clustering within households and in individuals over time.  Points are arithmetic mean prevalence proportion ratios and 
bars represent 95% confidence intervals.     



 

 

162

162

0 0.5 1 1.5 2 2.5 3

Female interviewee
Female caregiver
Person is female

Household with more than mean number of people (≥7)
Caregiver has been to school

Living on < US$1 per day (self-reported)
Has electricity

Home has dirt floor
Home has a tile roof

Home is made of brick or cement
Access to sanitation

Feces observed in household at the time of visit
Soap is in the house at time of visit
Animals in the house at time of visit

Caregiver reports practicing handwashing at critical points
Has uncovered storage container at time of visit

Having more than 100 E. coli/100ml in household drinking water
User dips to get drinking water
Using rainwater at time of visit

Using deep well (≥10m) at time of visit
Using surface water at time of visit

Using a water source >100m from the house at the time of visit
Using a water source >500m from the house at the time of visit

Prevalence proportion ratio (PPR)

 
Figure 4.4.  Association of measured covariates with diarrheal disease in children under five years of age, adjusted for presence of the 
intervention (CWP1 or CWP2) and for clustering within households and in individuals over time.  Points are arithmetic mean 
prevalence proportion ratios and bars represent 95% confidence intervals.     
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Figure 4.5.  Association of measured covariates with dysentery in children under the age of five, adjusted for presence of the 
intervention (CWP1 or CWP2) and for clustering within households and in individuals over time.  Points are arithmetic mean 
prevalence proportion ratios and bars represent 95% confidence intervals.      
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CHAPTER 5:  CERAMIC FILTERS FOR POINT-OF-USE DRINKING WATER 
TREATMENT IN RURAL CAMBODIA: INDEPENDENT APPRAISAL OF 
INTERVENTIONS FROM 2002-2005 
 

Abstract 

This study is an independent follow-up assessment of two large-scale 

implementations of the household-scale ceramic drinking water purifier (CWP) 

conducted by two NGOs over a period of forty-four months (2002-2005) in rural 

Cambodia.  Approximately 1000 household filters were introduced by Resources 

Development International (RDI) in Kandal Province from December 2003 and 1000+ 

filters by International Development Enterprises (IDE) in Kampong Chhnang and Pursat 

provinces from July 2002.  This study assesses the water quality and health impacts of the 

CWP interventions to date. 

The study was carried out in three parts: (i) a cross-sectional study of households 

that originally received filters to determine uptake and use proportions, as well as factors 

associated with continued use of the technology; (ii) a water quality assessment in 80 

households successfully using the filters (from part 1) to determine the microbiological 

effectiveness of the filters in treating household water, focusing on both treated and 

untreated water; and (iii) a longitudinal health study comparing diarrheal disease 

prevalence in 80 households using the filters successfully to 80 control households 

(without filters).  Control households were matched by water source, socio-economic 
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criteria, demographic data, and physical proximity.  Water quality data were collected for 

control households as well, including stored, boiled water samples, if available.   

Findings of this study included: (i) the rate of filter disuse was approximately 2% 

per month after implementation, due largely to breakages; (ii) controlling for time since 

implementation, continued filter use over time was most closely positively associated 

with related water, sanitation, and hygiene practices in the home, cash investment in the 

technology by the household, and use of surface water as a primary drinking water 

source; (iii) the filters reduced E. coli/100 ml counts by a mean 98% in treated versus 

untreated household water; (iv) microbiological effectiveness of the filters was not 

observed to be closely related to time in use; (v) the filters can be highly effective in 

reducing microbial indicator organisms but may be subject to recontamination, probably 

during "cleaning" with soiled cloths; and (vi) the filters were associated with an estimated 

46% reduction in diarrhea in filter users versus non users (prevalence proportion ratio: 

0.54, 95% CI 0.41-0.71).   

 

5.1  Introduction 

5.1.1  Water quality and diarrheal diseases in Cambodia 

For the estimated 66% of Cambodians without access to improved drinking water 

sources (NIS 2004) and the potentially much greater percentage without consistent access 

to microbiologically safe water at the point of use, household-based water treatment can 

play a critical role in protecting users from waterborne disease.  Surface water in 

Cambodia is plentiful but often of very poor quality, due in part to inadequate or 

nonexistent sanitation in both rural and urban areas.  Only 16% of Cambodians have 
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access to adequate sanitation facilities (ibid.).  Some groundwater sources in the country 

are also known to contain high levels of naturally occurring arsenic and other chemical 

contaminants (Feldman et al.  2007; Polya et al.  2005).  Arsenic in the groundwater is an 

especially urgent problem in parts of the lower Mekong delta region where there is a high 

population density.  The first cases of arsenicosis in Cambodia were reported in August 

2006, in Kandal province (Saray 2006).  Surface water and shallow groundwater (often of 

poor microbiological and aesthetic quality) and rain water catchment sources (susceptible 

to contamination during storage) are the principal alternatives to arsenic-contaminated 

deep wells.   

According to Cambodian national health statistics for the year 2000, the 

prevalence of childhood diarrhea (children aged 0-60 months) is 18.9%, based on a 14-

day recall period.  Prevalence in and around Phnom Penh is 24.4% (NIS 2000).  National 

data on diarrhea for older children and adults have not been collected, as children under 5 

years represent the most at-risk group and therefore have been the focus of surveys.   

There were an estimated 309,933 reported cases of diarrhea (including dysentery) in 

Cambodia in 2000, out of a population of approximately 13 million (WHO 2004).  

Diarrheal disease morbidity and mortality is often underreported, however. 

 

5.1.2  Study overview 

 An emerging point-of-use treatment technology is the ceramic water purifier 

(CWP), a household-scale, porous ceramic filter.  Commercially produced ceramic 

candle filters have been found to not only improve water quality at the point of use but 

also reduce household diarrheal disease (Clasen et al.  2004; Clasen et al.  2006a).  The 
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ceramic filter intervention evaluated in this study, however, has not been well 

characterized for its performance in the field to reduce diarrheal diseases.  Its 

effectiveness over long periods of regular use in the field has also not been well studied 

previously.  Knowledge of these factors is critical and prerequisite to successful scale-up 

and further investment in the technology.      

This study is an independent follow-up assessment of two large-scale 

implementations of the household-scale ceramic drinking water purifier (CWP) after 0-44 

months in use.  Approximately 1000 household filters were introduced by Resources 

Development International (RDI) in Kandal Province beginning in December 2003 and 

1000+ filters by International Development Enterprises (IDE) in Kampong Chhnang and 

Pursat provinces beginning in July 2002.  The American Red Cross, CIDA, AusAID, 

UNICEF, and the World Bank Development Marketplace Programme have supplied 

support to these two NGOs for various parts of the production and distribution cycle of 

the filters. 

Key research objectives identified by stakeholders were to: (i), evaluate the extent 

that filters improve microbiological quality of drinking water at the point of use; (ii), 

evaluate the extent to which filter protect users from diarrheal disease; (iii), determine 

whether and how filter effectiveness against microbes and/or diarrheal disease changes 

over time; (iv), determine how long filters are in use in households; and (v), identify 

factors associated with long-term use and factors associated with discontinuation of use 

to inform future and current implementation efforts.   

To meet these objectives, the following were measured: (i), the continued use of 

the filters over time as the proportion of initial filters still in use since introduction, and 
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the identification of factors potentially associated with filter uptake and long term use; 

(ii), the microbiological effectiveness in situ of the filters still being used, as determined 

by the log10 reduction of the indicator organism E. coli; and (iii), the health impacts of the 

filters as determined by a prospective cohort study using data on diarrheal disease 

prevalence and incidence estimates among filter users versus non-users.  Survey data 

intended to elucidate factors influencing implementation success and the challenges 

facing the long-term sustainability of this intervention in Cambodia were also collected.   

 

5.2  Purpose and objectives 

The purpose of this study was to assess continued use, continued microbiological 

effectiveness, and associated health impacts of the CWP filter after up to 4 years of use (0 

– 44 months) in households in rural Cambodia.    The study hypothesis was that the CWP 

as currently produced would continue to be used effectively in households in rural 

Cambodia beyond initial intervention programs, and that use of the intervention would be 

associated with improved household water quality and a reduction in diarrheal disease 

among users against a matched control group of households that never had filters. 

 

The specific objectives of this study were to:   

• assess uptake of the filters as implemented over 44 months by independently 

verifying use, 

• identify factors related to continued use or disuse since implementation, 

• assess microbiological effectiveness of filters as implemented by measuring E. 

coli in stored versus treated household water,  
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• determine whether an association exists between microbiological performance of 

filters and time in use,   

• assess health impacts by measuring diarrheal disease outcomes in households with 

access to filters versus a matched control group, and 

• examine the association between household water quality and diarrheal disease 

between the filter and control groups. 

 

5.3  Methods and materials 

5.3.1  Overview of methods 

The study was carried out in three parts: (i), a cross-sectional study of households 

that originally received filters to determine uptake and use proportions, as well as factors 

associated with continued use of the technology; (ii), a water quality assessment in 80 

households successfully using the filters (from part 1) to determine the microbiological 

effectiveness of the filters in treating household water, focusing on both treated and 

untreated water; and (iii), a longitudinal health study comparing diarrheal disease 

prevalence in 80 households using the filters successfully to 80 control households 

(without filters).  Control households were matched by water source, socio-economic 

criteria, demographic data, and physical proximity.  Water quality data were collected for 

control households as well, including stored, boiled water samples, if available.   

 

5.3.2  The intervention 

Ceramic filtration is the use of porous ceramic (fired clay) to filter microbes or 

other contaminants from drinking water.  Pore size can be made small enough to remove 
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virtually all bacteria and protozoa by size exclusion, down to 0.2µm, in the range referred 

to as microfiltration.  Small-scale ceramic filtration has a long history, having been used 

in various forms since antiquity (Sobsey 2002). 

The ceramic water purifier (CWP) is a flower pot shaped (i.e., "pot-style") 

ceramic filter.  Porosity in the ceramic (< 1µm and larger) is created by mixing burnout 

material into the unfired clay, which is typically very fine sawdust, ground rice husks, or 

some other combustible material that disintegrates during the firing process to leave 

behind pore space.  Water passes through the porous ceramic filter element (capacity 

approximately 10 l) at 1-3 l/hr into the receiving container (10-20 l), where it is dispensed 

via a tap to prevent post-filtration contamination of the product water through dipping or 

other contact with soiled hands or vessels.  Filters are often treated with a silver 

compound or other agent to inhibit microbial growth in the filter and possibly to enhance 

microbiological effectiveness.  Porous ceramic filters vary widely in design, 

effectiveness, and cost.  The model for the CWP is the ICAITI filter developed in Latin 

America in the early 1980s (AFA Guatemala 1995), promoted widely by the NGO 

Potters for Peace.   

The CWPs under study here are from two NGO manufacturers in Cambodia, 

International Development Enterprises (IDE) and Resource Development International 

(RDI).  Their designs, production methods, silver treatment methods, and quality control 

steps are distinct but similar.  This study was not intended to sort out the better method of 

production or effectiveness between the technologies themselves.  They were assumed 

similar enough to be comparable under field conditions.   
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5.3.3  Cross-sectional study 

5.3.3.1  Overview 

In order to evaluate the successful adoption of the filters, 600 households were 

randomly selected from the original 2000 households that received filters in three 

provinces.  Of these, 506 could be located and consented to participate, and so were 

included in the cross-sectional assessment.  After obtaining informed consent from the 

head of household (and primary caregiver for the children, if a different person), the data 

collection team first determined whether the filter was in current use.  Criteria for 

‘current use’ were that the filter: (i), was in good working order (filter element, tap, and 

receptacle intact and apparently functional); (ii), that it contained water or was damp 

from recent use; and (iii), one or more household members reported daily use for the 

production of drinking water.  Since filters typically take 3 or more days to dry 

completely, filters that were dry were not considered in current use.  Each household was 

scored on filter use and a questionnaire was administered to the adult primary caregiver 

for the household, usually an adult female.  Data on basic household demographics and 

socio-economic status, household water handling and use, sanitation, health and hygiene 

behaviors, and other factors thought to be related to CWP adoption were collected.  

Observational data related to these variables were also noted by the field data collection 

team.   

All survey instruments were prepared in both English and Khmer before use in 

the study; they were pre-structured and pre-tested by back-translation from Khmer to 

English and used in pilot interviews to determine suitability of content and structure, 

reliability, and consistency.  Surveys used simple, straightforward language with 
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predominantly closed (multiple choice) questions.  Individual survey questions were 

prepared in some cases based on input from previous questionnaires used by RDI and 

IDE in their own internal assessments of the CWP interventions for comparability 

purposes.  The data collection (field) team was composed of four interviewers who were 

native speakers of Khmer and had experience in community health data collection in the 

study areas.  Four weeks of pre-project interviewer training was carried out, employing 

mock interviews, focus groups with communities in the study area, and workshops with 

local NGO staff.    

 The main outcome variable in the cross sectional survey was filter use at the time 

of follow up.  A logistic regression model was employed using filter use at time of follow 

up as a binary outcome variable.  Measured covariates were tested for independent 

associations with the filter use at time of follow up, controlling for time since 

implementation coded as a categorical variable with time in 6-month blocks.          

 

5.3.3.2  Study sites 

Filters were implemented originally in three provinces in Cambodia.  

Interventions in Kampong Chhnang and Pursat provinces were carried out by 

International Development Enterprises (IDE) from July 2002.  Resource Development 

International (RDI) conducted implementation from December 2003 in Kandal province.  

Households included in the study were located in 13 rural villages in the three provinces.   
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5.3.3.3  Definition of study population and selection of households 

The study population consisted of all households originally receiving filters as 

part of the two large intervention projects in the three provinces of Kandal (n=1000), and 

Kampong Chhnang and Pursat (n=1000).  Complete lists of households who received 

filters as part of the original interventions were compiled from information provided by 

the implementing NGOs.  GPS coordinates or other locating details were available for 

some of the households.  A master list of all households in the three project areas was 

compiled, and households were selected at random using a random numbers table.  Two 

hundred (200) households originally receiving filters were randomly selected for follow 

up visits in each of the three provinces.   

Inclusion criteria for the cross-sectional survey of households were: (i), being a 

family or other household communal unit that received a CWP through the 

implementation program; (ii), a family or other household communal unit still living at 

the same location where they received the filter; and (iii), voluntary willingness to 

participate in the survey.  Exclusion criteria for the cross-sectional survey were: (i), the 

family or other household communal living unit no longer lives at the original location or 

(ii), unwillingness to participate in the survey. 

 

5.3.3.4  Data collection   

During the months of February and March 2006, the data collection team visited 

households that had originally received filters.  The cross sectional survey included data 

collection on a variety of covariates potentially influencing the continued use of the 

filters under a variety of conditions and during up to 45 months of use.  These included 
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water use and handling practices and socio-economic measures, as well as elapsed time 

since implementation of the filter.  Reasons for and estimated date of filter disuse were 

also solicited from respondents.  The data on household water use and handling practices 

was gathered during an interview with the household head, defined as the adult caregiver 

for the children, usually an adult female.  A wealth index measure of the household was 

used.  It was based on access to electricity and an inventory of household possessions 

indicative of relative wealth.  Data on the method of gathering water from the household 

storage container and on the presence of soap in the household was gathered by 

demonstration to the interviewer.   

 

5.3.3.5  Data entry and management 

Survey data were collected via verbally administered questionnaires and recorded 

onto hard copy data sheets. Households and individuals were assigned a unique code 

number as an identifier.  During sample collection, household surveys and water samples 

were identified by a unique household code number assigned by the data collection team.  

Data were collected and original data sheets were stored at the laboratory office in bound 

notebooks in a locked cabinet with access only to specifically authorized project staff.  

Surveys and water quality data were entered regularly into a Microsoft Excel spreadsheet 

or Microsoft Access database and copied into Stata (version 8.1), excluding the direct 

personal identifiers of the study participants.  All data were entered twice to ensure 

consistency and accuracy of data input.     
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5.3.3.6  Analytical approach   

Observational and survey data collection at household visits were transcribed 

from questionnaires and double-entered into Microsoft Access. They were then exported 

to Microsoft Excel and Stata for analysis.  Logistic regression reporting odds ratios was 

performed using filter use at time of follow up as a binary outcome variable, with 

covariates tested for independent associations with the outcome.  Logistic regression 

analysis was also performed controlling for time since implementation, coded as a 

categorical variable with time in 6-month increments.        

The main outcome variable in the cross sectional survey was filter use at the time 

of follow up.  Criteria for filter use were that household members indicated regular daily 

use of the filter, that the filter appeared to be in good working order, and that the inside of 

the filter contained water or was damp from recent use.  Filters that were broken, being 

used for another purpose, or completely dry were considered out of use.     

 

5.3.4  Prospective cohort study   

5.3.4.1  Overview 

A longitudinal study was conducted using eligible participants from the cross-

sectional cohort and additional households recruited from the same area.  Our approach in 

determining the health effects of the filters among users in the households that had them 

was the reduction of diarrhea relative to a reference group in households that did not have 

filters.  This was a prospective cohort study design of 80 households currently using 

filters and 80 households not using filters.  Each household currently using a CWP 

(intervention, as determined by data collected in the cross-sectional survey) enrolled in 
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the follow-up study was matched with a non-intervention (control) household (without a 

filter) based on area or geolocation (<1 km distant), water source, and approximate 

wealth.  An additional 25 intervention households were recruited in Kampong Chhnang 

to increase the sample size to 80 households in each group. This was because an 

insufficient number of eligible households were identified in Kampong Chhnang & 

Pursat provinces using random selection of households from all households originally 

receiving filters.  Participating households were visited three times for water sample 

collection and analyses.  Data on diarrheal disease was gathered on two of these 

occasions.  Data on water use and handling practices, sanitation and hygiene, and other 

potentially important covariates also were gathered.  Stratified analyses and log-linear 

regression with Poisson extension of generalized estimating equations (GEE) were 

employed in analysis of time series data to determine the effect of the filter and water 

quality in the home on diarrheal disease prevalence.  Prevalence proportion ratios, 

estimating incidence rate ratios, for diarrheal disease based on a seven day recall period 

among members of households with (intervention) and without (non-intervention or 

control) filters were used as the main outcome.  Descriptive analyses of the intervention’s 

impacts on household water quality based on levels of E. coli bacteria and turbidity were 

also performed.       

 

5.3.4.2  Study population and selection of households   

The subjects were persons who live in households using a CWP and an 

approximately equal number of matched (on geographic location, socioeconomic status 

estimate, and drinking water sources) households not using CWPs in Kandal, Kampong 
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Chhnang, and Pursat provinces.  Participating households were randomly selected from 

all eligible households within the three provinces, from thirteen rural villages (Figure 

5.1).    

As a goal of the study was to assess effectiveness of filters over some time in use, 

the random selection of households was weighted within provinces to ensure that the 

cohort would be representative of filters in use for 0-4 years.  Because interventions in 

each province took place during known periods, weighting the randomization by province 

(50% in Kandal, 25% in Kampong Chhnang, 25% in Pursat) produced eligible 

households with filter in use over the 4 years.  Had eligible households using filters been 

randomly selected from all those eligible households encountered during the cross- 

sectional study, this would have weighted the cohort toward Kandal province and the 

newer interventions, as those households were much more likely to still be using their 

filters.   

Inclusion criteria for the longitudinal study were that households (i) were willing 

to voluntarily participate; (ii) stored water in the home; (iii) used a CWP in a household 

that originally received one (intervention household) or were located in the same 

community, have never used a CWP, and used the same or similar water sources for 

household water as CWP households (reference or control household); (iv) had one or 

more children aged 5 years or less as a household member at the first household visit; and 

(vi) did not use commercial bottled water as the primary source of household potable 

water.  Exclusion criteria were: (i) unwillingness to participate, (ii) no child less than 5 

years of age in the household at the time of the first household visit, (iii) primary or 
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exclusive use of commercial bottled water as potable water in the home, and (iv) 

unavailability of a consenting matched household in the other study group.  

 

5.3.4.3  Inducements to participate   

All subject households were provided with gratis water filters and storage 

containers upon completion of the study (after household interviews and water samples 

were collected) in return for participation in the study.  Households in Kandal received 

equivalent filters from RDI and households in Kampong Chhnang and Pursat received 

IDE filters.  In addition, all study subjects were provided with oral rehydration salts and 

instructions for use at no cost at each household visit by the study team.   

 

5.3.4.4  Ethics 

Informed consent was obtained from the appropriate family member.  This was 

the head of household (defined as the primary caregiver for the children, responsible for 

household work and either responsible for or knowledgeable of household water 

management practices, usually an adult female) who acted as the main correspondent for 

the home in subsequent visits.  This person was identified by asking to speak with the 

person who is the primary care taker and in charge of household responsibilities such as 

water management, cooking, cleaning, etc.  The consent form was translated into Khmer 

and then back translated into English, and piloted to ensure clarity before use in the field.  

Subjects read or were read the form in Khmer by project staff.  Participating 

householders were presented with a narrative description of the project (both written and 

orally) and asked to participate in the study entailing up to three household visits by the 
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project team.  Participants then signed the consent form, representing consent for all of 

the persons in the house.  This project and its means for obtaining informed consent from 

participants were reviewed and approved by the Biomedical Institutional Review Board, 

The University of North Carolina at Chapel Hill, USA, and the Ministries of Health and  

Rural Development, Cambodia. 

 

5.3.4.5  Data collection 

5.3.4.5.1  Diarrheal disease 

Diarrheal disease data for all household members from both study groups were 

collected based on 7 day recall.  Interviews were conducted with the household primary 

caregiver on two separate occasions approximately one month apart.  Interviewees were 

asked to report diarrheal disease (yes/no) for each member of the family in the previous 7 

days including the day of the visit.   

 

5.3.4.5.2  Water quality data 

Water samples of 250 ml volume were taken from each household in the study to 

determine the effectiveness of the filters in reducing the concentrations of microbes 

present in drinking water sources.  All samples were stored cold until analysis as soon as 

possible in the laboratory for E. coli and total coliform, pH, and turbidity.  Samples in 

Kandal province were analyzed the same day; samples collected in Kampong Chhnang 

and Pursat provinces were stored up to 36 hours before analysis.   

E. coli and total coliforms in samples were enumerated by filtering undiluted and 

diluted samples through 47-mm diameter, 0.45µm pore size cellulose ester filters in 
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standard, sterile magnetic membrane filter funnels and membranes were incubated on 

appropriate agar or broth media-soaked absorbent pads.  Agar and broth media (Rapid 

HiColiform media, HiMedia, M1465/M1453) detect total coliform (TC) bacteria and E. 

coli by cleavage of a chromogenic substrate for the enzyme β-galactosidase to detect total 

coliforms and a fluorogenic substrate for the enzyme β-glucuronidase  to detect E. coli, 

producing color-specific TC colonies and E. coli colonies that fluoresce under long-wave 

UV light at 366nm (Manafi and Kneifel 1989; Manafi et al.  1991; Geissler et al.  2000).  

Plates were incubated for 20 – 24 hours at 37oC.  These methods conform to EPA 

Approved Method 1604 (USEPA 2002), although the culture medium used was similar 

but not identical to the EPA-approved MI medium.  Results were reported as colony 

forming units (cfu) per 100 ml sample.  

All samples were processed in duplicate using a minimum of two sample dilutions 

and positive and negative controls.  Households in the intervention group were sampled 

for two types of water: untreated, stored household water and treated water as it was 

delivered via the filter tap.  Samples from the control households were taken for analysis 

as well, and included their current drinking water and untreated water, if they use another 

water treatment method (e.g., boiling).  Turbidity of water samples was measured in 

triplicate using a turbidimeter (Hach Pocket®) and the average values reported as NTU.  

pH of water samples also was measured in the laboratory using an electronic pH meter 

(Thermo Orion 290A+).  Three rounds of water samples were taken from each study 

household over the 10 week sampling period (February 10 – April 21).     

 



 

 

186

186

5.3.4.5.3  Additional data 

In addition to the household data collected on health and water quality, additional 

data on potential covariates were collected during household visits.  Questions were 

asked to determine compliance with the household water intervention (water acquisition, 

treatment, storage and use practices) and to document sanitation and hygiene conditions 

and practices.  A survey of sustainability measures (e.g., frequency of filter use and 

cleaning, time involved in use of the filter, perception of use convenience, filter element 

replacement experience, etc.) was also administered to households using CWPs.  These 

data can potentially provide important insight into the success of the intervention to date 

in the households where it is still being used successfully.  The collected hygiene, 

sanitation, and water use data can be correlated with water quality and health data as 

potential covariates in the subsequent analysis.   

 

5.3.4.6  Analytical approach 

5.3.4.6.1  Exposures and outcomes 

Water quality, health, and other household data were initially used in stratified 

analyses to identify trends for key exposure and outcome variables.  Exposure variables 

of interest were presence of an intervention (CWP), water quality measures including E. 

coli/100 ml in household drinking water, and other measured covariates related to water, 

sanitation, and hygiene.  Key outcome variables were diarrheal disease in all individuals 

and in children under five years of age (0-48 months at the first household visit).   
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5.3.4.6.2  Regression and confounding 

Regression models were used to analyze diarrheal disease prevalence proportions 

by exposure status.  Potentially confounding variables in the analytical model were (i) 

those that affect the exposure in the study population (e.g., factors associated with 

continued use of the filter); and (ii) those that are risk factors for the outcome of diarrheal 

disease in the control group (Last 2001).  Confounders were identified based on an a 

priori change-in-effect criterion of 10%.  Stratified and adjusted pooled estimates for 

health effect measures were reported.    All analyses were performed in Stata Version 8.1 

(StataCorp, College Station, TX).   

 

5.3.4.6.3  Effect measure estimation for outcomes 

Stratified analyses and log-risk regression with Poisson extension of generalized 

estimating equations (GEE) were employed in analysis of time series data to determine 

the effect of the interventions and water quality in the home on diarrheal disease (both 

bloody and non-bloody diarrhea) as described below.  Prevalence proportion ratios for 

diarrheal disease based on a 7-day recall period among members of households with 

(intervention) and without (non-intervention or control) filters were used as the main 

outcome; analyses were performed using the intervention against the control group.  

Incidence rate ratios were also estimated from the prevalence proportion ratios based on 

case frequency and duration assumptions as described below.     
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5.3.4.6.4  Generalized estimating equations 

To control for clustering of the outcomes within households and within 

individuals over time, a Poisson extension of generalized estimating equations (GEE) was 

employed in log-linear regression.  GEE methods for analyzing binary outcomes over 

multiple time points were first described by Zeger and Liang (1986) and Liang and Zeger 

(1986).  The model uses the marginal expectation (average response for observations 

with the same covariates) as a function of covariates in the analysis; correlation between 

individual observations is computed via a variance estimation term.  The GEE model 

assumed that missing observations are Missing Completely at Random (MCAR) as 

described by Little and Rubin (2002): that the probability of an observation being missing 

is not related to measured or unmeasured cofactors that may be related to the exposure or 

the outcome.  The GEE model and its application to binary longitudinal data accounting 

for correlation is described by Diggle et al.  (2002).   

 

5.3.4.6.5  Longitudinal prevalence proportion ratios 

The measure of diarrheal disease risk in this study was the longitudinal prevalence 

ratio, the proportion of total observed time with the disease outcome in individuals.   The 

mean longitudinal prevalence for the group is also the proportion of time with the 

outcome divided by the total observed time, if all group members are followed for an 

equal number of days (Schmidt et al. 2007).  Because not all individuals were followed 

for the same amount of time in this open cohort due to missing observations, loss to 

follow up, death, and birth, longitudinal prevalence for individuals whose records 

comprised less than the 14 days of post-baseline observation were computed on a 
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weighted basis.  Because a seven day recall period was used at each household visit and 

no data were collected on case duration or frequency, the longitudinal prevalence 

calculation for individuals had a resolution of seven days.   

 Longitudinal prevalence is a diarrheal morbidity measure that has been shown to 

be strongly correlated with risk of mortality in children under 5 years of age (Morris et al. 

1996; Schmidt et al. 2007).  Longitudinal prevalence may be better correlated with 

nutritional status than incidence measures (Morris et al. 1996; Schmidt et al. 2007).  

Longitudinal prevalence measures also possess practical and analytical advantages over 

incidence measures, since case frequency and duration data (often difficult to obtain) are 

not collected (ibid.; Baqui et al. 1991; Morris et al. 1994).  For these reasons, an 

increasing number of studies incorporate this measure in intervention trials (e.g., Chiller 

et al. 2006; Crump et al. 2004a, 2004b; Luby et al. 2006).   

The analytical model produces estimations of longitudinal prevalence proportions 

that are computed from binary recall data. Estimates for longitudinal prevalence were 

adjusted for clustering within households and in individuals over time using a Poisson 

extension of Generalized Estimating Equations (GEE) as described previously.  The 

prevalence proportion ratio (PPR) was then computed as the diarrheal prevalence 

proportion in this intervention group divided by the prevalence proportion in the control 

group.   

 

5.3.4.6.6  Incidence rate ratios 

Incidence rate ratios were also estimated for outcomes of diarrheal disease based 

on assumed case durations of three days for diarrheal disease one case per seven day 
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period based on the binary recall data.  Person time at risk was then computed as four 

days if an episode of diarrheal disease was reported and seven days if no cases were 

reported for that seven day period.  Computed incidence rate ratios based on these 

assumptions and prevalence proportion ratios closely approximated the other. 

 

5.3.4.7  Sample size calculations 

In order to calculate a reasonable estimate for the diarrheal disease burden for the 

study population to use in initial sample size calculations, we used a weighted averages 

approach.  If we accept that children under 5 have a diarrheal disease prevalence of 

24.4%, and if children between 5 and 15 years of age are assigned a figure of 12%, and 

one-third of children under 15 are assumed to be under 5 (a conservative estimate), then 

the prevalence of diarrhea among those under 16 can be computed as 16.1%.  If the 

remainder of the population is assigned a background prevalence of 8%, the overall rate 

of diarrheal disease in the entire population would be 11.4%.  We used a baseline 

estimate of 12% in the sample size calculations.  Diarrheal disease incidence rates (and 

therefore prevalence) vary with the season, with changing, seasonally-dependent water 

use and handling practices, with changing living conditions, and other factors.   

Based on recent systematic reviews by Fewtrell et al.  (2005) and Clasen et al.  

(2006b, 2007), which found that water quality interventions were associated with a mean 

40% reduction in diarrheal disease outcomes, we based our sample size calculation on the 

detection of a prevalence proportion ratio (PPR) of 0.75 (that is, detection of a 25% 

reduction in group mean prevalence of diarrhea experienced by users versus non-users of 

the filter).  This detectable difference of 25% is considered to be conservative, based on 
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data published by International Development Enterprises – Cambodia (Roberts 2004), 

who found that the CWP was associated with a 41% decrease in diarrhea among all users 

versus non-users (26% among women, 55% among men) in an initial study of the 

intervention.  Also, considering Fewtrell and Colford’s (2004) reported effect of 

household water treatment interventions on children specifically (rate ratio = 0.59; 95% 

CI: 0.45 – 0.78) and in rural settings only (rate ratio = 0.53; 95% CI: 0.39 – 0.73), there is 

prior evidence that using a detectable PPR of 0.75 is reasonable, given this study’s a 

priori inclusion criterion of households having children under 5 years of age and the filter 

distribution areas being largely rural.       

The sample size for the study was computed as 417 individuals (in each group) to 

detect a 25% difference in proportions (PPR = 0.75) between the study groups with 80% 

power and α = 0.05, using the methods for analysis of binary outcomes in multiple groups 

with repeated observations as described by Diggle et al.  (2002).  Calculations account 

for limited clustering within households and clustering in individuals over time, which 

are potentially important in the analysis of diarrheal disease data (Leon 2004; Killip et al.  

2004).  Results of power analyses in EpiSheet and EpiInfo were in general agreement 

with these results.  Assuming 5 individuals per household, a conservative estimate, this is 

approximately equal to 72 households.  Eighty (80) households were recruited for each 

study group (households with CWPs and households without them) to compensate for 

possible attrition.   
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5.4  Results 

5.4.1  Cross-sectional study of filter uptake and use 

5.4.1.1  Study participants and households   

A total of 506 households with an average of 5.9 people per household were 

included in the cross sectional study (total number of persons = 2965, 52% female).  

Basic demographic and proxy data on household wealth was gathered and households 

were assigned to one of three groups: 17 households (3%) were relatively wealthy, 254 

(50%) middle, and 235 (46%) poor.   

 A number of households (64, 11%) could not be found as GPS or other locating 

information was not included with the original implementation records in Kampong 

Chhnang and Pursat.  Other households (29, 5%) had moved during the intervening years.  

One household (<1%) refused to participate in the study.  Informed consent was obtained 

from 178 households in Kandal, 132 households in Kampong Chhnang, and 196 

households in Pursat province.  The province-weighted randomization process created a 

weighted overall sample toward Pursat and Kampong Chhnang.  This is because filters 

were in use there for up to 44 months and therefore a lower number of households 

maintaining regular filter use was expected.  Because subsequent water quality and health 

data collection would examine relationships between health effects and microbiological 

effectiveness as a function of time since implementation in this cohort, our intention was 

to ensure adequate numbers of in-use filters were included from the older intervention 

project.       

 Table 5.1 presents data collapsed over provinces and estimated odds ratios.  Odds 

ratios were calculated based on all households using filters versus those not currently 
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using filters (collapsed across province), adjusted for time in use as coded in 6 month 

increments.  Filters that have been in use for 0 to the end of 5 months were coded as 0-5 

months, and so on.  Odds ratio estimates greater than one indicate a positive association 

between the factor and filter use; odds ratios less than one indicate a negative association.   

 

5.4.1.2  Water use and handling practices  

As households were recruited from across three provinces and several villages, a 

wide variety of water use and handling practices were observed, all of which varied 

greatly by province.  During the study period of February – April (dry season), 243 

households (48%) reported using surface water (lake, pond, river, stream, or canal) as a 

primary drinking water source (PDWS); 79 (16%) reported use of a deep well (defined 

here as ≥10m in depth); 152 (30%) used a shallow well; 39 (8%) used stored rainwater 

from the previous rainy season; and 9 (2%) of households reported using bottled drinking 

water.  The distribution of prevalent drinking water sources varied with the region.  

Respondents were asked to estimate the distance to the primary drinking water source: 

340 (67%) of sources were within 100m, 128 (25%) were between 100-500m, and 38 

(8%) were >500m away.   

All households encountered in the study used one or more water storage 

containers to store water inside or (more commonly) outside the home; 164 (32%) used 

one or more uncovered containers (unsafe storage).  Containers were most commonly 

ceramic or concrete traditional design vessels.  Respondents were asked to demonstrate 

the usual method of collecting water from the container for drinking.  A total of 220 
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(43%) of the respondents dipped hands or a cup directly into the container, while 286 

(57%) used a tap or a dipper which was then poured out into a cup for drinking.   

 

5.4.1.3  Sanitation and hygiene practices   

Of the 506 households included in the study, 194 (38%) had access to sanitation 

(either the household’s own or a shared latrine).  None of the households were connected 

to a conventional sewerage system.  Sanitation access varied greatly by location; in 

Kandal, 71% of households had access to a latrine, versus 14% in Kampong Chhnang and 

26% in Pursat.  The difference here is due to the fact that study sites in Kandal were 

relatively wealthier and also because increasing access to sanitation had been one of 

RDI’s efforts linked to CWP implementation in some communities.  Therefore, 

households that had received filters were more likely to have received sanitation access 

as well.  Respondents were asked whether and how often they and members of their 

family washed their hands, for example after defecating and before preparing food.  175 

(35%) of household caregivers indicated that s/he washed hands “always” with soap and 

water at critical points such as after defecating or before preparing food.  Respondents 

were also asked to demonstrate that there was soap in the household at the time of the 

visit; 339 households (67%) were able to produce it.  Additionally, 114 respondents 

(23%) reported receiving health education relevant to water, sanitation, and hygiene.  Of 

these, 18 (16%) reported receiving information from family and friends, 87 (76%) from a 

health worker or NGO, 78 (68%) from radio, 103 (90%) from television, and 1 (1%) from 

school.   Ninety-two (92%) percent of study respondents indicated that diarrhea is a 

serious illness for children.  Eighty-one (81%) percent of respondents reported that water 
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is an important route of disease transmission.  These basic health messages, along with 

instructions on proper use and regular maintenance of the filters, accompanied most 

implementations of the filters in the study areas. 

 

5.4.1.4  Filter use   

Of 506 households in the cross-sectional study, 156 (31%) were using the filter 

regularly at the time of follow up, although the proportion in use was strongly associated 

with the length of time elapsed between filter installation in the household and follow up 

(Table 5.1; Figure 5.2).  If the filter was in regular (daily) use by the household, users 

were asked several questions about filter use such as times filling it per day and water 

uses.  Users reported filling the filter an average of 1.8 times per day and cleaning it 2.3 

times per week. 133 (86%) of households reported using the filter for drinking water 

only.      

 Respondents were also asked where they obtained the filter, whether the filter in 

the household at the time of the visit is a replacement filter, how much the filter cost, 

where they would go to buy a new filter if desired, and what an appropriate (“fair”) price 

would be for new filters.  A small number of households reported purchasing additional 

filters after a breakage: 11 (6%) in Kandal, 4 (3%) in Kampong Chhnang, and 6 (3%) in 

Pursat.  Of 281 households with disused filters responding, 120 (43%) households 

reported a willingness to purchase an additional filter: 24 (73%) in Kandal, 20 (19%) in 

Kampong Chhnang, and 76 (53%) in Pursat.  Respondents were asked to name an 

appropriate price for the CWP; the mean non-zero response (n=106) was 9500 riel (US$ 

2.38): 5900r (US$ 1.48) in Kandal, 6700r (US$ 1.68) in Kampong Chhnang, and 11800r 
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(US$ 2.95) in Pursat.  Households that were successfully using the filter on a daily basis 

were asked about purchasing additional or replacement ceramic filter inserts; 72% of 

respondents were willing to pay US$2.50, 29% were willing to pay US$4, and 26% were 

willing to pay US$5.  The cost of replacement ceramic filter elements in Cambodia is 

currently in the US$2.50-$4 range. jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj                                                  

 Among respondents who previously used but are not currently using filters, 

factors associated with a willingness to purchase an additional filter were using a covered 

household water storage container (OR: 1.9, 95% CI 1.0-3.3) and having purchased a 

filter (versus having been given one) before (OR: 3.1, 95% CI 1.6-6.0).    When 

respondents were asked whether household members knew where to purchase additional 

filters and parts, only 26% did, although distribution points are available in all three 

provinces within 20km from the intervention locations.  Whether these distribution points 

were readily accessible to respondents was not clear, however, due to the high cost of 

transport and seasonal accessibility of roads.   

 

5.4.1.5  Filter disuse over time   

Time since implementation was calculated from the original implementation 

questionnaire (delivery) date where possible, followed by estimation based on the date 

stamped on the filter rim (manufacture date), followed by users’ best estimates from 

interviews.  Of the 477 filters for which estimates were possible, 253 (53%) were reliably 

dated using questionnaire or filter data and the remaining were dated by user estimation, 

which was probably less accurate.  Broken filters were often no longer available to 

inspect.  The manufacturing date could not be discerned on many of the oldest filters due 
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to surface wear.  Twenty-nine (29) filters, 6% of the total, could not be dated confidently 

by any means.     

 Of the 350 filters no longer in use, 328 households provided responses when 

asked why their filter was out of use.  A total of 214 (65%) were due to filter unit 

breakage, either of the ceramic filter element, the spigot, or the container (Figure 5.3).  

The other one third of respondents gave the following reasons for disuse: the filter was 

too slow or otherwise unable to meet the household drinking water demand (5%); the 

filter had passed its recommended useful life as indicated by the NGO manufacturer, and 

so users assumed it was no longer effective (5%); gave or sold the filter to a friend or 

relative (3%); or a number of other reasons.  A number of users reported having repaired 

the containers or taps on their own using locally-available replacement parts (buckets and 

taps).  Figure 5.4 presents the distribution of filter time in use for all filters out of use at 

the time of follow up; filters were in used in households about 2 years, on average.   

 

5.4.1.6  Factors associated with continued filter use   

Figure 5.5 graphically displays observed associations between filter uptake and 

measured factors, together with 95% confidence intervals; odds ratios of less than one 

(whose confidence intervals exclude the 1.0 null value) are considered strong predictors 

of decreased use over time.   Odds ratios greater than one (whose confidence intervals 

exclude the 1.0 null value) are considered strong predictors of increased use over time.    

The most important predictor of the proportion of filters remaining in household 

use is time since implementation.  The results of logistic regression indicate a declining 

odds of 44% every 6 months of finding a filter still in use (OR: 0.56, 95% CI 0.50-0.63).  
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Figure 5.2 indicates an average falloff in use of approximately 2% per month after 

implementation.   

 Other important predictors of continued filter use over time, controlling for time 

since implementation, were determined to be water source, investment in the technology, 

access to sanitation, and the practice of other water and hygiene-conscious behaviors in 

the household.  Adjusted odds ratios for selected measured parameters’ associations with 

continued filter use are presented in Table 5.1 and Figure 5.5.   

With respect to water source, households that reported groundwater use from deep 

wells (defined here as ≥10m) were less likely to use the filter (OR: 0.38, 95% CI 0.18-

0.79) after controlling for time since implementation.  Conversely, a positive association 

was observed between surface water use and continued filter use (OR: 1.7, 95% CI 1.1-

2.7).  Similar associations were not observed between continued filter use and the use of 

covered versus uncovered wells,  method of withdrawing water from wells, estimated 

distance to main drinking water source, method of withdrawing water from the household 

water storage container, or use of stored rainwater or bottled water during the study 

period (the dry season).   

Other potentially important demographic and socio-economic predictors of filter 

use were also examined as a part of the cross sectional study.  Sex of household head (OR 

1.1, 95% CI 0.63-2.0) and reported household income (OR: 0.68, 95% CI 0.42-1.1) were 

not associated with the outcome of continued filter use after controlling for time since 

implementation.   

 Cash investment, at any level, by the household in the filter was associated with 

continued filter use (OR: 2.1, 95% CI 1.2-3.7) versus receiving the filter gratis.  Cash 
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payments for the filters ranged from 1000 to 10,000 riel (US$0.25 – $2.50).  No clear 

trend was observed between filter use and the level of cash investment.       

 Respondents who reported other safe water, sanitation, and hygiene practices 

were more likely to be using the filter at the time of follow up.  For example, access to a 

household’s own or shared latrine (OR: 2.4, 95% CI 1.5-4.0), the household caregiver 

reporting that s/he always washed hands with soap and water at critical points such as 

after defecating or before preparing food (OR: 1.6, 95% CI 1.0-2.6), and the presence of 

soap in the household (OR: 1.7, 1.0-3.0) were all observed to be positively associated 

with filter use after controlling for time since implementation.  The practice of covering 

the household water storage container (safe storage) may also be positively associated 

with continued filter use (OR: 1.6, 95% CI 0.94-2.7).   No clear association was observed 

between filter use and caregivers reporting water-related health and hygiene education 

(OR: 0.74, 95% CI 0.42-1.3).  Observed associations do, however, suggest a relationship 

between filter use and knowledge of positive household health and hygiene practices.   

 

5.4.1.7  Time in use   

Of 350 total disused filters, 317 were dated based on original installation records, 

the lot number and date on the filter rim, or respondents’ estimates.    Users were asked to 

approximate, if possible, the date that the family stopped using the filter to the nearest 

month.  Distribution of time-in-use data in 6 month increments is presented in Figure 5.4.   
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5.4.2  Prospective cohort study 

5.4.2.1  Study participants and households   

Subjects for the longitudinal water quality and health study were identified and 

recruited from the cross-sectional study cohort, who in turn were identified from records 

on the initial implementation of the filters.  Eligible and consenting households from the 

cross-sectional survey were immediately recruited into the longitudinal cohort for further 

water quality and health data collection.  A further 25 households in Kampong Chhnang 

were recruited from outside the cross-sectional cohort to increase the sample size to 80 

total households meeting criteria for intervention households, as required from a priori 

sample size calculations.   

Demographic and other characteristics of the households included in the 

longitudinal study are presented in Table 5.9, by study group.   One hundred fifty-nine 

(159) households completed both follow up visits, with a total of 1007 people (mean 

household size: 6.3, median age: 18, range: 1-84 years at the time of first household visit.  

Because having a child ≤5 years of age was a longitudinal study inclusion criterion for 

households. the age distribution in the two household groups (intervention and non-

intervention) may not be representative of the source population in the study villages.  

One intervention household (1%) was lost to follow up.  All households were located in 

Kandal, Kampong Chhnang, and Pursat provinces in villages where the initial CWP 

implementations took place.   
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5.4.2.2  Data stratified by study group   

The intervention group, those using CWPs regularly, contained 79 households and 

528 individuals (6.68 people per household, 53% female, 15% under the age of five).    

Of these households, 40 (51%) were located in Kandal, 18 (23%) in Kampong Chhnang, 

and 21 (27%) in Pursat.  Respondents were asked more detailed questions about 

socioeconomic factors (including a direct estimate of household income) and education 

for the primary caregiver in the household.  Reported total household income in 13 (16% 

of) households was <$50, in 41 (52% of) households $50-$99, in 15 (19% of) households 

$100-$149, and in the remaining 10 households (12%) $≥150.  Education levels for the 

primary caregiver (usually an adult female) in the intervention group were reported as: 19 

(24%) had some or all primary school, 59 (75%) had some or all secondary school, and 1 

(1%) had post-secondary training.   

 The control group (without filters) contained 80 households and 479 individuals 

(5.98 people per household, 51% female, 18% under the age of five).    Of these 80 

households, 40 (50%) were located in Kandal, 20 (25%) in Kampong Chhnang, and 20 

(25%) in Pursat.  Respondents were asked more detailed questions about socioeconomic 

factors (including a direct estimate of household income) and education for the primary 

caregiver in the household.  Of the 80 control households, 19 (24%)  reported total 

household monthly income as <$50, 39 (49%) reported in the $50-$99 range, 18 (22%) in 

the $100-$149 range, and the remaining 4 households (5%) ≥$150.  Education levels for 

the primary caregiver (usually an adult female) in the control group were reported as: 27 

(34%) had some or all primary school, 52 (65%) had some or all secondary school, and 1 

(1%) had post-secondary training.   
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5.4.2.3  Water use and handling practices   

Intervention households (including those not included in the cross-sectional study 

(from Kampong Chhnang) were asked about water use and handling practices, hygiene 

and sanitation, and potentially important covariates as in the cross-sectional study.  

Results are presented in Table 5.9.  During the study period of February – April (dry 

season), 43 households (54%) reported using surface water (lake, pond, river, stream, 

prek, boeng, or canal) as a primary source of drinking water; 13 (16%) reported use of a 

deep well (defined here as ≥10m in depth); 19 (24%) used a shallow well; and 6 (8%) 

used stored rainwater from the previous rainy season.  23 (29%) used one or more 

uncovered water storage containers.  Respondents were asked to demonstrate to the 

interviewer the usual method of collecting water from the container for drinking; 35 

(44%) of respondents dipped hands or a cup directly into the container, while 44 (56%) 

used a tap or a dipper which was then poured out into a cup for drinking.   

 Control households were asked about water use and handling practices, hygiene 

and sanitation, and potentially important covariates as in the cross-sectional study.  

Results are presented in Table 5.9.  During the study period of February – April (dry 

season), 48 households (60%) reported using surface water (lake, pond, river, stream, 

prek, boeng, or canal) as a primary source of drinking water; 12 (15%) reported use of a 

deep well (≥10m in depth); 22 (28%) used a shallow well; and 2 (3%) used stored 

rainwater from the previous rainy season.  Thirty (30) (37%) used one or more uncovered 

water storage containers.  Respondents were asked to demonstrate the usual method of 

collecting water from the container for drinking; 30 (38%) of respondents dipped hands 
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or a cup directly into the container, while 50 (62%) used a tap or a dipper which was then 

poured out into a cup for drinking.   

 

5.4.2.4  Sanitation and hygiene practices 

Of the 79 households in the intervention group, 44 (56%) had access to sanitation 

(either the household’s own or a shared latrine).  None of the households were connected 

to a conventional sewerage system.  Respondents were asked whether and how often they 

and members of their family washed their hands, for example after defecating and before 

preparing food.  Of the 79 households, 33 (42%) of respondents indicated that hand 

washing was practiced by all members of the household “always” at critical points with 

soap and water.  Respondents were also asked to demonstrate that there was soap in the 

household at the time of the visit; 62 intervention households (77%) were able to produce 

it.   

Of the 80 households in the control group, 35 (44%) had access to sanitation 

(either the household’s own or a shared latrine).  None of the households were connected 

to a conventional sewerage system.  Respondents were also asked whether and how often 

they and members of their family washed their hands, for example after defecating and 

before preparing food.  Of 80 household respondents, 29 (36%) indicated that hand 

washing was practiced by all members of the household “always” at critical points with 

soap and water.  Respondents were also asked to demonstrate that there was soap in the 

household at the time of the visit; 70 control households (87%) were able to produce it.   
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5.4.2.5 Water quality data  

5.4.2.5.1  Mean pre- and post-treatment sample data 

Household drinking water quality data for all households are presented in Table 

5.2.  Sixty-six percent (66%) of CWP-treated water samples were under 10 E. coli/100 

ml, with 40% of samples having <1 E. coli/100 ml.  Sixty-two percent (62%) of 

household drinking water samples from control households contained relatively high 

levels of E. coli (≥101 cfu/100 ml E. coli) versus 14% of samples from intervention 

households.  Summaries of arithmetic and geometric means of total coliform, E. coli, and 

turbidity counts in intervention household samples (both treated and untreated water) are 

presented in Tables 5.3 and 5.4.  The arithmetic mean E. coli concentration in filter-

treated water was 160 cfu/100 ml (95% CI 61-260) against 3000 cfu/100 ml (95% CI 

2000-4000) in control households.  The geometric mean E. coli concentration in filter-

treated water was 15 cfu/100 ml (95% CI 9.9-22) compared to 570 cfu/100 ml (95% CI 

430-750) in control households.  Figure 5.6 shows the distribution of E. coli, TC, and 

turbidity data in treated and untreated water samples.       

   

5.4.2.5.2  Log10 reduction values (LRVs)  

The log10 reduction values of E. coli in treated versus untreated water are 

presented as standard measures of technology performance (Table 5.5).  Based on 203 

total samples over three sampling rounds, the arithmetic mean log10 reduction of E. coli 

using the CWP was 1.3 (95% CI 1.10-1.51, n=203) or 95.1%.  The arithmetic mean log10 

reduction of total coliforms using the CWP was 1.0 (95% CI 0.82-1.22, n=203) or 90%.  

The arithmetic mean reduction in turbidity was 73% (95% CI 68%-78%, n=203).  The 
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geometric mean log10 reduction of E. coli using the CWP was 1.7 (95% CI 1.5-1.9, 

n=203), or 98%.  The geometric mean log10 reduction of total coliforms using the CWP 

was 1.2 (95% CI 1.0-1.4, n=203) or 94%.  The geometric mean reduction in turbidity was 

70% (95% CI 65%-75%, n=203); Figure 5.7 shows these data graphically for all samples 

with the arithmetic means as point estimates. 

 

5.4.2.5.3  Stored boiled water  

Many households reported using boiled water for some or all of the household 

drinking water (55% of control households, 33% of intervention households), although in 

practice this water is often reserved for adults only and usually used to make tea.  In order 

to compare stored, treated water quality between the CWP and stored, boiled water, a 

total of 84 boiled water samples were taken and processed for E. coli, total coliforms, 

turbidity, and pH along with other water samples.  The log10 reduction value distribution 

for the two treatment methods are similar, including the percentage of samples having 

worse quality than the untreated (raw) water stored in the home as determined by E. coli 

counts (Table 5.8).   

The arithmetic mean log10 reduction of E. coli using the CWP was 1.3 (95% CI 

1.10-1.51, n=203), or 95.1%, versus 1.7 for boiling (95% CI 1.5-2.0, n=84) or 98.2%.  

The geometric mean log10 reduction of E. coli using the CWP was 1.7 (95% CI 1.5-1.9, 

n=203), or 98%, versus 2.0 for boiling (95% CI 1.8-2.3, n=84) or 99%.  The arithmetic 

mean turbidity in stored, boiled water samples was 8.6, versus 1.5 for samples taken from 

CWPs.   
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5.4.2.5.4  Filter effectiveness and time 

There did not appear to be a strong correlation between filter effectiveness and 

time in use (Tables 5.6 and 5.7; Figure 5.8).  Microbiological effectiveness as indicated 

by E. coli LRVs or by E. coli quantification of filter effluent revealed no change in trend 

of performance level in samples taken from filters representing a broad range of time in 

use.   

 

5.4.2.6  Diarrheal disease  

5.4.2.6.1  Impacts of filter intervention on diarrheal disease 

Details of the cohort included in the health impact assessment are presented in 

Table 5.9.  A clear difference in diarrheal disease prevalence was observed in filter 

(intervention) households compared to control (non-filter) households, in all age groups, 

both sexes, and in each province (Tables 5.10 and 5.11), indicating a strong protective 

effect of the intervention.  The adjusted prevalence proportion ratio (PPR) effect estimate 

for all ages was 0.54 (95% CI: 0.41-0.71), corresponding to a reduction in diarrheal 

disease of 46%.  Incidence rate ratios were approximated from the diarrheal recall data 

and are calculated for comparison, based on case duration and frequency assumptions.  

The estimates for diarrheal disease impact of the CWP were adjusted for no covariates as 

none produced a ≥10% change-in-estimate of effect (a greater than or equal to 10% 

change in the overall estimate when adding variables to the model), including socio-

economic status as indicated by household income and other measured parameters; 

household demographics; access to sanitation; measured hygiene practices and 
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observations; and other variables.  A greater estimate of effect was observed where the 

background (control) prevalence proportion of individuals reporting diarrhea was higher.   

 

5.4.2.6.2  Diarrheal disease and water quality   

Diarrheal disease (7 day recall) was also examined as an outcome with water 

quality (E. coli cfu/100 ml) as the exposure variable, adjusting for presence of the 

intervention and clustering of the outcome between individuals in the same household.  

No correlation was observed between reported diarrhea and increasing levels of E. coli.  

Results of log-linear regression are presented in Table 5.12.     

 Compared to a reference level of 1.0 (adjusted prevalence proportion ratio from 

GEE analysis) within the E. coli stratum of <1 E. coli/100 ml, from 1-10 E. coli/100 ml 

the prevalence proportion ratio was computed as 1.0 (95% CI 0.66-1.7).  From 11-100 E. 

coli/100 ml, the PPR was 1.0 (95% CI 0.82-1.2).  Within the stratum of samples falling in 

the range of 101-1000 E. coli/100 ml, a PPR of 1.1 (95% CI 0.95-1.2) was computed.  

For samples yielding over 1000 culturable E. coli per 100 ml sample, the stratum-specific 

PPR was 0.95 (95% CI 0.84-1.1).   

 

5.4.2.6.3  Other factors related to diarrheal disease  

Independent associations between diarrheal disease and other measured cofactors 

were analyzed, displayed graphically in Figures 5.9 and 5.10.  These estimates and 

confidence intervals were adjusted for clustering within households, in individuals over 

time, and for the presence of the intervention (CWP).  Positive associations with diarrheal 

disease were observed with the following factors: living in the poorest, most rural  



 

 

208

208

province, Pursat (PPR = 1.5, 95% CI 1.2 – 2.0 for all ages; PPR = 1.9, 95% CI 1.2 – 3.0 

for under 5s); being under 5 years of age (0-48 months) at the start of the study (PPR = 

2.5, 95% CI 1.9 – 3.3); and the observation of human or animal feces inside the 

household at one or more visits (PPR = 1.5, 95% CI 1.0 – 2.2) (Figures 5.9 and 5.10).   

Adjusting for clustering within households and within individuals over time, 

negative  associations with diarrheal disease were observed with the following factors: 

living in the wealthiest, peri-urban province, Kandal (PPR = 0.65, 95% CI 0.49 – 0.85 for 

all ages; PPR = 0.63, 95% CI 0.39 – 1.0 for under 5s); having more than the mean 

number of people in the household (greater than 7 individuals, PPR = 0.68, 95% CI 0.52-

0.89); living in a house that is constructed primarily of brick or concrete, a positive 

wealth indicator (PPR = 0.35, 95% CI 0.16 – 0.78); the household caregiver having 

attained at least primary school education (PPR = 0.61, 95% CI 0.46 – 0.81 for all ages; 

the use of rainwater as a primary (non-exclusive) drinking water source during the study 

(PPR = 0.77, 95% CI 0.58 – 1.0); access to a latrine (PPR = 0.56, 95% CI 0.43 – 0.74 for 

all ages; PPR = 0.55, 95% CI 0.34 – 0.90 for under 5s); and the adult caregiver reporting 

that she or he washes hands with soap "always" at critical points such as after cleaning a 

child or before preparing food (RR = 0.73, 95% CI 055 – 0.98, all ages (Figures 5.9 and 

5.10). 

 

5.5  Discussion 

5.5.1  Factors associated with long term filter use 

Results suggest that ceramic water filters are more likely to be used by 

households that (i) already have some knowledge of safe water, sanitation, and hygiene 
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practices; (ii) invest in (purchase) the technology; (iii) use surface water sources for 

drinking water; and (iv), do not use deep wells (≥10m) as a primary source of drinking 

water.  The high rate of breakage of the filters suggests that the availability of 

replacement parts and access to or awareness of distribution points may limit the 

sustainability of ceramic filter intervention efforts.  This is because a predicted 2% of 

filters may fall into disuse each month after implementation due primarily to breakage.  It 

is recognized, however, that NGO filter (hardware) models and implementation strategies 

are improving and this study accounts only for those in already in use for varying periods 

of time up to 4 years.  Despite the declining use of the intervention, user satisfaction with 

the filters was generally very high, and a high percentage of users reported a willingness 

to purchase additional filters or replacement parts.  Time in use for filters in households 

was about 2 years, on average, before disuse (Figures 5.2 and 5.4).  This suggests that 

filters can be used reliably for extended periods and also that users valued the filters 

enough to keep using them, usually until breakage.  Greater availability and accessibility 

of spare parts, especially the ceramic filter elements themselves, should enhance the 

sustainability of the intervention. 

Because these data are cross-sectional for use data from several interventions over 

44 months, it would be incorrect to describe the 2% decline in use per month post-

implementation as a falloff “rate”, although evidence (Figure 5.2) suggests that there is a 

linear association between use and time that transcends differences in implementation 

models or other locally variable factors.  No filter implementations took place where 

users had access to replacement filters or parts, so these data may not represent situations 

where replacements are available to users.         
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The declining use of 2% per month is consistent with the findings of one other 

ceramic filter implementation study that reported a decline in use of approximately 20% 

after 9 months in Bolivia in the absence of replacement filters (Clasen et al.  2006a).  

Several studies have examined uptake of interventions for household water use and safe 

storage by measuring continued use of the technology or method (Luby et al.  2001; 

Mong et al.  2001; Parker et al.  2006; Clasen et al.  2006a).  Often uptake and use of 

technologies is a complex process that involves many socio-cultural factors (Wellin 

1955; Rogers 2003).  There is some evidence that this is a major factor limiting the 

success of household water treatment, for all technologies.  More research is needed on 

the long term sustainability of this strategy for providing access to safe water, although 

some method of household water treatment may be the only option for many lacking 

access to this basic need.   

Anecdotal evidence in the study region suggests low flow rates and rapid clogging 

of ceramic filters are associated with the use of groundwater from deep wells, which 

suggests these factors may explain the lower use of CWPs among those using deep wells 

as a primary water source.  This may be the result of insoluble ferric (Fe3+) iron 

formation from dissolved Fe2+, which occurs in high concentrations in many Cambodian 

groundwaters (Feldman et al.  2007).  The same association was not observed with 

households reporting use of shallow wells (OR: 0.91, 95% CI 0.50-1.7), possibly due to 

Fe oxidation and precipitation that occurs in the water of open wells before water is 

drawn.  Interviews with participating study households confirmed that water from deep 

well sources is also perceived to be potable without further treatment.   

 



 

 

211

211

5.5.2  Impacts of filter intervention on household drinking water quality 

Use of a CWP was associated with a substantial improvement in drinking water 

quality at the household level compared to a matched control group not using filters, 

reducing E. coli by a mean of 98% with reductions as high as 99.99%.   

 

5.5.3  Filter effectiveness and time 

There does not appear to be a change in the relationship between filter 

effectiveness and time, supporting the hypothesis that the filters can maintain 

effectiveness for up to 4 years (and potentially longer) in household use.  For this reason 

and because 5% of households surveyed indicated filter "expiration" as a reason for not 

continuing to use it (Figure 5.3), existing recommendations by manufacturers and 

implementers on filter replacement (usually every 1-2 years) should be reconsidered.   

Further work is needed to evaluate filter performance against other microbes, including 

human pathogens, over time and for durations of more than four years. 

 

5.5.4  Boiling 

Results suggest that filters were as effective as boiling for the reduction of E. coli 

in household drinking water.  CWPs should not, however, be marketed as a replacement 

technology for boiling until more extensive studies have shown that the CWP is also 

consistently effective against viruses and protozoan parasites.  Use of the CWP was 

associated with a greater reduction in turbidity over boiling.  Interviews with users 

suggest that the improved aesthetic properties of the filter-treated water as well as its 
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lower comparative cost make the CWP an attractive option for drinking water treatment, 

findings that agreed with those of Roberts (2004).        

 

5.5.5 Recontamination 

The treated water may be susceptible to re-contamination, however, as are all 

household water treatment methods, including the most microbiologically effective 

method (boiling), as was observed in this study.  Results suggest that, although both 

boiling and treatment via CWPs can improve water quality, there is a potential risk of 

recontamination of water through unsafe filter handling and water storage practices.  

Education and training in proper technology use and safe water storage practices should 

be part of any effective program to improve water quality in the home.  Compliance has 

been shown to be positively associated with health gains due to water quality 

improvements at the point of use (Clasen et al.  2006b).     

These results are consistent with studies (e.g., Wright et al.  2004 and Jensen et al.  

2002) showing that recontamination of stored water in the home could significantly 

impact the quality of potable water used in the household.  While improving the 

technology is important, it must also be stressed that proper use of the technology is as 

critical as the technology itself.  Behavioral change and education “software” 

accompanying interventions may increase proper use of the filters and result in lower 

levels of recontamination and possibly lower risks of waterborne diarrheal disease.   
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5.5.6  Log10 reduction values (LRVs) and filter performance   

A common method for evaluating performance is the computation of log10 

reduction values (LRVs; Table 5.5; Figures 5.7 and 5.8), which correspond to percent 

reductions of some measure (e.g., E. coli/100 ml, turbidity) due to treatment.  Treated 

water concentrations greater than untreated water concentrations for the indicator under 

study (E. coli, cfu/100 ml) lead to negative log10 reduction values (LRVs).  Out of 79 

filters in the intervention group, 46 were observed to have negative LRVs at one or more 

visits: 20 (50%) filters in Kandal, 10 (56%) in Kampong Chhnang, and 10 (48%) in 

Pursat.  Nine filters (11%) failed at multiple time points.   

Filters may produce water of worse apparent quality than the untreated (raw) 

water, resulting in negative log10 reductions of E. coli.  These results may be due to 

changing E. coli levels over time (either die-off or regrowth, Desmarais et al.  2002), a 

change in source water from that used to produce filtrate, in situ inactivation of the 

indicator due to exposure of the filter or household stored water to sunlight or some other 

process, or other factors.   

Another possible explanation for negative LRVs is filter recontamination during 

use, for example due to improper cleaning or handling.  While the storage system used 

with the ceramic water filters is generally thought to be safe (closed storage container, 

water dispensed via a tap), contamination of the filter could be introduced through 

frequent cleaning or cleaning with a contaminated cloth.  As indicated previously, E. coli 

in filtered water could also multiply during storage.  Seventy-seven (77%) percent of 

households in the intervention group reported cleaning the filter element with a cloth or 

krama (n=79) and 71% reported cleaning the storage container with a cloth or krama 
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(n=79).  Eighty-nine percent (89%) of users reported cleaning the filter and 29% reported 

cleaning the storage container with raw water only, with the remainder using soap and 

raw water.  The mean reported frequency of cleaning the filter was 2.3 times per week.  

Kramas are multi-use traditional cloths used around the household in Cambodia, which 

are thought to be important vectors for fecal microbes and possibly other pathogens.  

Cleaning the filters with these cloths may be one means of compromising the filter and 

recontaminating the stored water.  No clear associations were observed, however, 

between the probability of negative LRVs (achieving <0 log10 reduction of E. coli) and 

measured parameters such as reported frequency of use, frequency of cleaning, method of 

cleaning the filter or bucket, number of people in the household, manufacturer, time in 

use, or other factors as determined by logistic regression.   

 

5.5.7  Diarrheal disease  

5.5.7.1  Effects of the intervention on diarrheal disease 

Use of the filters was associated with a reduced diarrheal disease burden during 

the study, with diarrheal prevalence in the intervention group being only 54% of that in 

the control (non-filter) group (PPR = 0.54, 95% CI 0.41-0.71).  These effects were not 

significantly different across age, sex, or province categories.  Results suggest that the 

CWP does reduce the burden of diarrheal disease in users versus non-users.  Estimates 

were not adjusted for any measured covariates as none produced a ≥10% change in effect 

when added to the model, which was the a priori criterion for the identification of 

confounding.   
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5.5.7.2  Diarrheal disease and water quality 

No association was observed between E. coli in household drinking water and 

diarrheal disease after adjusting for presence of the intervention and for clustering of the 

outcome between household members.  Results suggest that the presence of E. coli in 

household drinking water, even at very high levels (>1000 cfu/100 ml), may not be 

strongly correlated with diarrheal disease outcomes.    

The water quality parameters used in this study are known to vary by season and 

diurnally as functions of temperature, available nutrients, exposure to sunlight, and other 

factors, so water quality data from single sampling events may not be representative of 

drinking water quality in use by the household.  At best, these data represent a series of 

point estimates of E. coli in water that may approximate levels of waterborne pathogen 

concentrations across space and time.  For this reason, positing associations between 

water quality data based on E. coli levels and the outcome of diarrheal illness may be 

tenuous.  Other studies have failed to explicitly observe this association (e.g., Jensen et 

al.  2004).  Gundry et al.  (2004) concluded that there was no clear association between 

levels of indicator bacteria (E. coli, thermotolerant coliforms) and diarrhea in a review of 

intervention trials.  Similarly, Moe et al.  (1991) found no relationship between diarrheal 

illness rates and good quality (<1 E. coli/100 ml) versus moderately contaminated water 

(2-100 E. coli/100 ml) in a field study from the Philippines.   

Possible explanations for these results are that (i) E. coli is not a sufficiently good 

indicator of waterborne diarrheal disease in the context of this study (dry season, stored 

household drinking water in rural Cambodia); (ii) that measured health impact data 

(diarrheal disease occurrence) are misleading due to a placebo effect of the filters (e.g., 
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Hellard et al.  2001; Colford et al.  2002) and/or that drinking water may not be an 

important route of exposure to diarrheagenic pathogens in the population at the time of 

the study; (iii) that health data are biased due to recall (Boerma et al.  1991) or reporting 

issues (Thomas and Neumann 1992); or that (iv) the measured E. coli concentration from 

the time of sampling is not representative of the drinking water quality consumed by all 

the household members during the previous 7 days.   

This study assumes that the filters do improve water quality and that in doing so 

they reduce waterborne disease.  Although improvements in water quality are measured 

by reduction of E. coli in drinking water, it may not follow that reductions in diarrhea 

result from reductions in E. coli in water.  Indeed we assume that diarrhea and E. coli in 

water are not well correlated based on previous studies (e.g., Moe et al. 1991).  The 

reduction in diarrheal disease overall is linked to the reduction of all pathogens in water, 

which may be only poorly indicated by E. coli itself.   

 

5.5.7.3  Diarrheal disease and other covariates 

A range of water, sanitation, and hygiene-related factors were associated with the 

outcome of diarrheal disease in this study.  After adjusting for the presence of the 

intervention (CWP), negative associations (decreased diarrheal disease) were observed 

for diarrhea with handwashing, sanitation, maternal education, province, a wealth 

indicator, and number of people in the household.   Positive associations (increased 

diarrheal disease) were observed with age (under 5 years of age), hygiene as indicated by 

presence of feces in the household at the time of visit, and province.    
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5.5.8  Study limitations   

This study was limited primarily by its short duration, which did not allow for 

sampling to account for seasonal changes in water quality and health.  There was also the 

potential for selection bias in this study design.  In some cases the remoteness of 

sampling sites contributed to delayed delivery of water quality samples, potentially 

impacting the reliability of these data.  These are briefly discussed below.    

 

5.5.8.1  Seasonal effects 

Seasonal effects on diarrheal disease prevalence or microbiological water quality 

were not accounted for in this study, which was conducted entirely in the dry season.  

Annual rainfall is not evenly distributed throughout the year in Cambodia: during the 

rainy season (June – October) it rains between 15 and 30 cm per month, with dry season 

(December – March) averages of 0-5 cm per month.  Water use practices, water treatment 

practices, diarrheal disease rates, and the presence of microbial pathogens and indicators 

in potential drinking water sources can vary greatly depending upon the season.  In the 

study areas, diarrheal disease prevalence may be higher in the dry season, when users 

shift away from the use of relatively safe rainwater to relatively unsafe surface water 

sources, and because lower water availability in the dry season may limit hygiene 

practices.   Longitudinal studies such as this one that attempt to capture the protective 

effect of an intervention on diarrheal disease are subject to possible effect measure 

modification by seasonal effects, resulting in very different quantitative findings or even 

outcomes over the course of a year as conditions change.   
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5.5.8.2  Selection bias 

Selection bias can threaten the validity of studies when study inclusion is 

predicated upon technology uptake and use.  In this study, selection bias may have arisen 

because households that received filters or were still using the filters after some 

intervening time may have been fundamentally different from those in the control group, 

who never received filters.  Control selection was used to counter this potential bias by 

matching intervention and control households by potentially important characteristics 

such as socio-economic status and water source, although this bias may not have been 

eliminated wholly from the study.  Although measured parameters could be accounted for 

in the analysis, there is a possibility that covariates that are associated with differences 

between study groups were not measured.  Other or better socioeconomic data; human 

behaviors that may be linked to water quality or health; or other factors related to water, 

sanitation, and hygiene could have been measured and linked with important differences 

between the groups included in this study.   In this study, selection bias of this type would 

tend to bias results away from the null hypothesis of no effect of the filter intervention on 

diarrheal disease, since households using the filter successfully over long periods may be 

more conscientious, more aware of water and sanitation issues, and/or more proactive in 

environmental health-related positive behaviors.   

 

5.5.8.3  Sample delivery and processing 

Although every effort was made to ensure that samples were transported quickly 

to the laboratory for analysis, there were field samples (approximately 6% of the total) 

that were not processed within 36 hours (up to 60 hours) from the point of sampling.  In 
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all cases samples were kept on ice in a cooler from the point of sampling.  ANOVA of E. 

coli and total coliform counts in samples as a function of hours between sampling and 

analysis did not suggest any difference in sample means coded within blocks of twelve 

hours from analysis (p = 0.23 for E. coli; p = 0.66 for total coliform).   

 

5.6  Conclusions 

Findings of this study are summarized below.   

• The rate of filter disuse was approximately 2% per month after implementation, 

due largely to breakages.  There was a strong association between filter use and 

time since implementation.    

• Controlling for time since implementation, continued filter use over time was 

most closely positively associated with related water, sanitation, and hygiene 

practices in the home, cash investment in the technology by the household, and 

use of surface water as a primary drinking water source.  Continued use of the 

filters was associated with awareness of other water, sanitation, and hygiene 

behaviors and improvements, suggesting possible synergies between CWP 

implementation and successful long-term use by users.   

• Continued use of the filters was positively associated with cash investment in the 

technology, although continued use was not observed to be closely related to price 

in this study.   

• The filters reduced E. coli/100 ml counts by a mean 98% in treated versus 

untreated household water, although demonstrated filter field performance in 

some cases exceeded 99.99%.   
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• Microbiological effectiveness of the filters was not observed to be closely related 

to time in use.  Since time in use was not shown to be strongly related to 

performance, recommendations that users replace the ceramic filter elements 

every one or two years (as is current practice) may not be necessary.   

• The filters can be highly effective in reducing microbial indicator organisms but 

may be subject to recontamination, probably during "cleaning" with soiled cloths; 

Recontamination of the filter and storage receptacle through improper handling 

practices is a real threat to the effectiveness of this technology.   

• The filters were associated with an estimated 46% reduction in diarrhea in filter 

users versus non users (PPR: 0.54, 95% CI 0.41-0.71).   

• No association was observed between measured E. coli in household drinking 

water and diarrheal disease, after adjusting for presence of the intervention and 

clustering within households.   

• Other significant associations were observed with water, sanitation, and hygiene-

related factors that were also measured as part of the study, such as handwashing, 

education, measures of SES, and access to sanitation, after adjusting for the 

presence of the intervention.      Using boiled drinking water, handwashing, access 

to sanitation, and other factors were also associated with reduced diarrheal 

disease, although more analytical work is needed to sort out these associations 

and potential confounders.   
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Table 5.1.  Data summary and estimated odds ratios for selected factors.  Odds ratios are 
adjusted for time elapsed since implementation.    
 

 Using filtera at time of 
follow up 

(156 households) 

Not using filter at time 
of follow up 

(350 households) 

OR  
(95% CI) 
Adjustedb 

Caregiver reported receiving  
health educationc 

   Yes 
   No 

 
 

31 (20%) 
125 (80%) 

 
 

83 (24%) 
267 (76%) 

 
 

0.74 (0.42-1.3) 

Soap observed in householdd 

   Yes 
   No 

 
119 (76%) 
37 (24%) 

 
220 (63%) 
130 (37%) 

 
1.7 (1.0-3.0) 

Purchased filtere 

   Yes 
   No 

 
112 (72%) 
44 (28%) 

 
99 (28%) 

251 (72%) 

 
2.1 (1.2-3.7) 

Living on less than 1 USD per day 
per person in householdf  
   Yes 
   No 

 
 

49 (31%) 
107 (69%) 

 
 

186 (53%) 
164 (47%) 

 
 

0.68 (0.42-1.2) 

Access to sanitationg 

   Yes 
   No 

 
102 (65%) 
54 (35%) 

 
92 (26%) 

258 (74%) 

 
2.4 (1.5-4.0) 

Safe storage practices observedh 
   Yes 
   No 

 
118 (76%) 
38 (24%) 

 
224 (64%) 
126 (36%) 

 
1.6 (0.94-2.7) 

Caregiver reports washing hands 
"always"i 

   Yes 
   No 

 
 

76 (49%) 
80 (51%) 

 
 

100 (29%) 
250 (71%) 

 
 

1.6 (1.0-2.6) 

Main drinking water sources during 
study (dry season)j 

   Surface water 
   Groundwater 
      Deep well (≥10m) 
      Shallow well 
   Rainwater 
   Bottled water 

 
 

98 (63%) 
41 (26%) 
14 (9%) 

27 (17%) 
23 (15%) 

2 (1%) 

 
 

145 (41%) 
190 (54%) 
65 (19%) 

125 (36%) 
16 (5%) 
7 (2%) 

 
 

1.7 (1.1-2.7) 
0.56 (0.34-0.94) 
0.38 (0.18-0.79) 
0.91 (0.50-1.7) 
1.4 (0.64-3.0) 
0.53 (0.08-3.4) 

Observed method of collecting 
household stored waterk 

   Use hands     
   Pour, tap, or designated dipper 

 
 

70 (45%) 
86 (55%) 

 
 

150 (43%) 
200 (57%) 

 
 

0.90 (0.56-1.4) 

Months since implementationl 
   0-5 
   6-11 
   12-17 
   18-23 
   24-29 
   30-35 
   36-41 
   42-48 

 
49 (31%) 
12 (8%) 

16 (10%) 
32 (21%) 
14 (9%) 
6 (4%) 
11 (7%) 
14 (9%) 

 
8 (2%) 
3 (1%) 

16 (5%) 
31 (9%) 
30 (9%) 
29 (8%) 

112 (32%) 
96 (27%) 

 
0.56 (0.50-0.63) 

(per 6 month 
increase)* 

 

a. Regular (daily) use, as determined by interview and by visual inspection.  May not add to 100% due to rounding.      
b. Odds ratios adjusted for time since implementation coded as a categorical variable in 6 month blocks, except *. 
c. Water, health, hygiene, or sanitation education from any source (school, NGO, media, etc). 
d.  Respondents were asked to demonstrate that soap was present in the household. 
e. Any price.  Prices paid for filters ranged from 1000 – 10,000 riel (US$0.25 – $2.50).  Actual cost is US$4-$8.   
f. Based on self-reported monthly income and number of members in household.     
g. Shared or own latrine.     
h. Safe storage was defined as using a covered or narrow mouth water storage container and a designated water dipper to collect water. 
i.  Caregiver responds that s/he washes hands “always” with soap at critical points such as after defecating.  
j.  Multiple answers possible. 
k. Respondents were asked to demonstrate their usual method of gathering water from the storage container.   
l. Based on NGO records from the original installation, the manufacturing date stamped onto the filter, or users’ estimates.     
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 Number (percentagea) of all samples by E. coli concentration of household drinking waterb  
 <1 

(cfu/100 ml) 
1-10 

(cfu/100 ml) 
11-100 

(cfu/100 ml) 
101-1000 

(cfu/100 ml) 
1,001+ 

(cfu/100 ml) 
Total samplesc 

Control households 40 (18%) 2 (1%) 42 (19%) 80 (35%) 62 (27%) 226 
       
  Kandal 
 

15 (13%) 2 (2%) 24 (21%) 46 (39%) 30 (26%) 117 

  Kampong 
   Chhnang 
 

13 (24%) 0 7 (13%) 15 (28%) 19 (35%) 54 

  Pursat 
 

12 (22%) 0 11 (20%) 19 (35%) 13 (24%) 55 

         
Intervention 
households 

89 (40%) 54 (26%) 38 (18%) 23 (11%) 7 (3%) 211 

       
  Kandal 
 

53 (47%) 32 (29%) 17 (15%) 9 (8%) 1 (1%) 112 

  Kampong 
   Chhnang 
 

18 (42%) 12 (28%) 6 (14%) 4 (9%) 3 (7%) 43 

  Pursat 
 

18 (32%) 10 (18%) 15 (27%) 10 (18%) 3 (5%) 56 

a.  Percentages within strata may not add up to 100% due to rounding.   
b.  Samples were filter effluent in intervention households, stored household drinking water for control households.  Households 
were asked to provide a sample of the water that the family was drinking at the time of visit.   
c.  Incomplete data for 14 (6%) control households and 29 (12%) intervention household samples. 

Table 5.2.  Observed levels of E. coli (cfu/100 ml) in household drinking water by study group.   
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 Water quality dataa, arithmetic means (untreated water) Water quality dataa, arithmetic means (treated water) 
 TC/100 ml E.coli/100 ml Turbidity (NTU) TC/100 ml E.coli/100 ml Turbidity (NTU) 
 
All provinces 

 
14,000 

 
2300 

 
8.70 

 
2000 

 
160 

 
1.53 

  
 Kandal 

 
10,000 

 
1100 

 
2.71 

 
1200 

 
77 

 
0.78 

 
Kampong 
 Chhnang 

 
22,000 

 
3300 

 
4.10 

 
2800 

 
31 

 
1.65 

   
Pursat 

 
14,000 

 
3700 

 
24.3 

 
3000 

 
23 

 
3.25 

 
a.  Data from intervention households, raw (untreated) water and filtered (treated water) samples from 3 sampling rounds, 
February-April 2006.   

Table 5.3.  Arithmetic mean total coliform and E. coli counts (cfu/100 ml) and turbidity for samples taken in intervention households 
(untreated and treated water). 
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 Water quality dataa, geometric means  

(untreated water) 
Water quality dataa, geometric means  

(treated water)  
 TC/100 ml E.coli/100 ml Turbidity 

(NTU) 
TC/100 ml E.coli/100 ml Turbidity (NTU) 

 
All 
provinces 
 

 
3,300 

 
470 

 
2.9 

 
310 

 
14 

 
0.77 

  
 Kandal 
 

 
3000 

 
340 

 
2.8 

 
240 

 
8 

 
0.59 

 
Kampong 
 Chhnang 

 
5,300 

 
940 

 
2.9 

 
360 

 
18 

 
0.77 

 
  Pursat 
 

 
3,000 

 
540 

 
8.4 

 
460 

 
25 

 
1.3 

a.  Data from intervention households, raw (untreated) water and filtered (treated water) samples from 3 sampling rounds, February-
April 2006 (n=203).   

Table 5.4.  Geometric mean total coliform and E. coli counts (cfu/100 ml) and turbidity for samples taken in intervention households 
(untreated and treated water).   
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 Percentagea of all filter samples by E. coli, log10 reduction valuesb (LRV) (n=203c) 
 
 

 
<0d 

 
0e 

 
.01-0.99 

 

 
1-1.99 

 
2-2.99 

 
3-3.99 

 
4.0+ 

 
All provinces 

 
17% 

 
10% 

 
12% 

 
16% 

 
36% 

 
7% 

 
2% 

  
 Kandal 

 
16% 

 
12% 

 
7% 

 
20% 

 
43% 

 
5% 

 
3% 

 
  Kampong  
    Chhnang 

 
19% 

 
10% 

 
12% 

 
7% 

 
40% 

 
10% 

 
2% 

 
  Pursat 
 

 
19% 

 
6% 

 
23% 

 
17% 

 
17% 

 
25% 

 
11% 

a.  Percentages may not add to 100% due to rounding.  
b.  Log10 reduction values are computed as the log10(effluent/influent); 1 LRV=90% reduction, 2 LRV=99% reduction, 3 
LRV=99.9% reduction, and so on.  Reduction is a function of influent water, however, and low LRV values do not necessarily 
indicate poor performance.  In forty percent of samples (n=89), filters reduced product water to <1 E. coli per 100 ml, so reported 
LRVs are potential underestimates.   
c.  203 (85%) sampling events (out of 240 total: 80 filters sampled three times each) yielded complete data to use in the LRV 
calculation.  
d.  Negative LRV values indicate that the effluent water contains more E. coli than the influent water. 
e.  In 100% of these samples the influent water contained 0 E. coli/100 ml.   

Table 5.5.  Summary of log10 reduction values of E. coli by CWPs, by province.  
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 Number (percentagea) of filter samples by E. coli, log10 reduction valuesb (LRV) (n=203c), stratified by 

time since implementation 
Time since 

implementation 
(months) 

 
<0d 

 
0e 

 
.01-0.99 

 
1-1.99 

 
2-2.99 

 
3-3.99 

 
4.0+ 

All (0-48) 35 20 24 32 73 15 4 
0-5 8 (23%) 6 (30%) 2 (8%) 4 (13%) 18 (25%) 4 (27%) 1 (25%) 
6-11 4 (11%) 1 (5%) 2 (8%) 7 (22%) 7 (10%) 0 0 
12-17 0 2 (10%) 1 (4%) 4 (13%) 5 (7%) 0 0 
18-23 8 (23%) 5 (25%) 2 (8%) 5 (16%) 14 (19%) 1 (7%) 2 (50%) 
24-29 1 (3%) 1 (5%) 3 (13%) 5 (16%) 2 (3%) 1 (7%) 0 
30-35 1 (3%) 0 2 (8%) 0 4 (5%) 1 (7%) 0 
36-41 5 (14%) 2 (10%) 6 (25%) 4 (13%) 14 (19%) 7 (47%) 1 (25%) 
42-48 8 (23%) 3 (15%) 6 (25%) 3 (9%) 9 (12%) 1 (7%) 0 

a.  Percentages may not add to 100% due to rounding.  
b.  Log10 reduction values are computed as the log10(effluent/influent); 1 LRV=90% reduction, 2 LRV=99% reduction, 3 
LRV=99.9% reduction, and so on.  Reduction is a function of influent water, however, and low LRV values do not necessarily 
indicate poor performance.  In many cases, filters reduced product water to 0 E. coli per 100 ml; here the calculated LRV potentially 
underestimates performance.   
c.  Only 203 (85%) sampling events (out of 240 total: 80 filters sampled three times each) yielded complete data to use in the LRV 
calculation.  
d.  Negative LRV values indicate that the effluent water contains more E. coli than the influent water.     
e.  In 100% of these samples the influent water contained 0 E. coli/100 ml.    

Table 5.6.  Summary of log10 reduction values of E. coli by the CWP, stratified by time in use.     
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 Number (percentagea) of filter-treated water samples by E. coli concentration, stratified by time since 

implementation   
Time since 

implementation 
(months) 

 

<1 
(cfu/100 ml) 

1-10 
(cfu/100 ml) 

11-100 
(cfu/100 ml) 

101-1000 
(cfu/100 ml) 

1,000+ 
(cfu/100 ml) 

Total 
samplesb 

All (0-48) 89 54 38 23 7 211 
0-5 22 (25%) 13 (24%) 4 (11%) 4 (17%) 1 (14%) 44 
6-11 11 (12%) 5 (9%) 3 (8%) 3 (13%) 0 22 
12-17 6 (7%) 2 (4%) 4 (11%) 0 0 12 
18-23 16 (18%) 12 (22%) 8 (21%) 3 (13%) 0 39 
24-29 4 (5%) 4 (7%) 4 (10%) 2 (9%) 0 14 
30-35 4 (5%) 1 (2%) 1 (3%) 2 (9%) 0 8 

36-41 15 (17%) 11 (20%) 8 (21%) 5 (22%) 1 (14%) 40 
42-48 11 (12%) 6 (11%) 6 (16%) 4 (17%) 5 (71%) 32 

a.  Percentages within strata may not add up to 100% due to rounding.   
b.  Incomplete data for 29 (12%) samples. 

Table 5.7.  Summary of E. coli counts (cfu/100 ml) in filter treated water, by time in use.    
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 Comparison of percentagea of filter effluent samples versus stored boiled water samplesb (control households) by 

E. coli, log10 reduction valuesc (LRV)  
  

<0d 
 

0e 
 

.01-0.99 
 

 
1-1.99 

 
2-2.99 

 
3-3.99 

 
4.0+ 

 
CWP 

 
17% 

 
10% 

 
12% 

 
16% 

 
36% 

 
7% 

 
2% 

 
 
Stored boiled 
water 
 

 
 

13% 

 
 

7% 

 
 

5% 

 
 

21% 

 
 

40% 

 
 

11% 

 
 

2% 

a.  Percentages may not add to 100% due to rounding.  
b.  203 total samples from CWPs, 84 from stored boiled water. 
c.  Log10 reduction values are computed as the log10(effluent/influent); 1 LRV=90% reduction, 2 LRV=99% reduction, 3 
LRV=99.9% reduction, and so on.  Reduction is a function of influent water, however, and low LRV values do not necessarily 
indicate poor performance.  In many cases, filters reduced product water to 0 E. coli per 100 ml; here the calculated LRV potentially 
underestimates performance.   
d.  Negative LRV values indicate that the effluent water contains more E. coli than the influent water. 
e.  In 100% of these samples the untreated water contained 0 E. coli/100 ml.   

Table 5.8.  Summary of distribution of log10 reduction values of E. coli by CWPs compared with boiled, stored water. 
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Characteristic Intervention  
(79 households*) 

Control group 
(80 households) 

Number (percent) of households by province 
   Kandal 
   Kampong Chhnang 
   Pursat 

 
40 (51%) 
18 (23%) 
21 (27%) 

 
40 (50%) 
20 (25%) 
20 (25%) 

Total number of people in group 528 479 

Mean number of individuals per household 6.68 5.98 

Number (percent) female 280 (53%) 243 (51%) 

Number (percent) children < 5 years of age 77 (15%) 86 (18%) 

Number (percent) children 5-15 years of age 143 (27%) 148 (31%) 

Formal education level of primary caregivera 

  Some or all primary school 
  Some or all secondary school  
  More than secondary   

r 
19 (24%) 
59 (75%) 
1 (1%) 

r 
27 (34%) 
52 (65%) 
1 (1%) 

Caregiver reported receiving  health educationb 

  Yes 
   No 

r 
23 (29%) 
56 (71%) 

r 
60 (75%) 
30 (25%) 

Self-reported total household income (US$/month) 
   <$50 
   $50-$99 
   $100-$149 
   ≥$150 

r 
13 (16%) 
41 (52%) 
15 (19%) 
10 (12%) 

r 
19 (24%) 
39 (49%) 
18 (22%) 
4 (5%) 

Soap observed in householdc 

   Yes 
   No 

r 
62 (77%) 
18 (23%) 

r 
70 (87%) 
10 (13%) 

Access to sanitationd 

  Yes 
   No 

r 
44 (56%) 
35 (44%) 

r 
35 (44%) 
45 (56%) 

Caregiver reports washing hands "always"e 

  Yes 
   No 

r 
33 (42%) 
46 (58%) 

r 
29 (36%) 
51 (64%) 

Main drinking water sources during study (dry 
season)f 

  Surface water 
   Groundwater 
      Deep well (≥10m) 
      Shallow well 
   Rainwater 

r 
43 (54%) 
32 (40%) 
13 (16%) 
19 (24%) 
6 (8%) 

r 
48 (60%) 
34 (43%) 
12 (15%) 
22 (28%) 
2 (3%) 

Safe storage practices observedg 
   Yes 
   No 

r 
56 (71%) 
23 (29%) 

r 
50 (63%) 
30 (37%) 

Observed method of collecting household stored 
waterh 

   Use hands     
   Pour, tap, or designated dipper 

r 
35 (44%) 
44 (56%) 

r 
30 (38%) 
50 (62%) 

*One intervention household was lost to follow up. 
a.  Usually an adult female who is responsible for child care. 
b.  Water, health, hygiene, or sanitation education from any source (school, NGO, media, etc). 
c.  Respondents were asked to demonstrate that soap was present in the household. 
d.  Shared or own latrine.     
e.  Caregiver responded that s/he washes hands “always” with soap at critical points such as after defecating.   
f.  Multiple answers possible. 
g.  Safe storage was using a covered/narrow mouth water storage container and a designated water dipper to collect water. 
h.  Respondents were asked to demonstrate their usual method of gathering water from the storage container.   

Table 5.9.  Selected characteristics of the intervention (households with CWPs) and 
control (without CWPs) groups from the longitudinal study of water quality and health.  
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Surveillance 
Point 

Group Prevalence 
proportion 

Unadjusted 
prevalence 
proportion 

ratio 

Cases Person-
days at 

riska 

Incidence 
rate 

Incidence rate 
ratio (95% CI) 

Adjusted PPR 
(95%CI) by 

GEEb 

Control 0.21  98 2947 0.033   1 
CWP 0.11 0.55 59 3491 0.017 0.51 (0.36-0.71) 0.55 (0.40-0.76) 

Control 0.16  75 3079 0.024   2 
CWP 0.082 0.52 43 3532 0.012 0.49 (0.34-0.74) 0.52 (0.36-0.75) 

a.  Cases were assigned a mean duration of 3 days; thus cases received 4 days of at-risk time during each seven day observation 
period.   
b.  Prevalence proportion ratio computed via Poisson extension of Generalized Estimating Equations (GEE), adjusted for clustering 
within households.   

Table 5.10.  Summary of longitudinal data for diarrheal disease by surveillance point. 
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 Mean diarrheal disease prevalence proportion over 10 

week study perioda 
Incidence rate ratiob 

(95% CIc) 
Adjusted prevalence 

proportion ratio 
(PPR)d 

(95% CI) 
 Intervention  Control    
All persons 0.10 0.18 0.51 (0.40-0.66) 0.54 (0.41-0.71) 
Agee 

  <5 years 
  5-15 years   
  ≥16 years 

 
0.19 
0.07 
0.09 

 
0.37 
0.10 
0.16 

 
0.47 (0.29-0.75) 
0.71 (0.38-1.3) 
0.50 (0.35-0.72) 

 
0.52 (0.32-0.86) 
0.72 (0.39-1.3) 
0.52 (0.35-0.76) 

Sex 
  Male 
  Female 

 
0.10 
0.10 

 
0.19 
0.17 

 
0.48 (0.33-0.69) 
0.55  (0.38-0.78) 

 
0.51 (0.34-0.75) 
0.57  (0.38-0.84) 

Province 
  Kandal 
  Kampong   
    Chhnang 
  Pursat 

 
0.08 
0.12 

 
0.10 

 
0.13 
0.18 

 
0.27 

 
0.62 (0.41-0.92) 
0.68 (0.41-1.1) 

 
0.34 (0.21-0.54) 

 
0.63 (0.41-0.97) 
0.70 (0.42-1.2) 

 
0.37 (0.22-0.62) 

a.  Two sampling rounds, February-April 2006 (dry season).  Figures represent the proportion of individuals reporting diarrhea in 
the previous 7 days.   
b.  Calculated by assuming a per-case duration of three days.  Individuals reporting cases were assigned four days of at-risk time 
during the seven day follow up period.   
c.  95% confidence interval.   
d.  Adjusted for clustering of diarrheal disease within households and within individuals over time 
e. Age in years at the time of the first household visit. 

Table 5.11.  Diarrheal disease prevalence and filter effect estimates by age and sex of individuals and province.   
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E. coli/100 ml in 

household 
drinking watera 

Stratum-specific 
prevalence 

proportion estimate

Prevalence 
proportion ratio 

(PPR)b 

95% CI 

<1 0.12 1.0 (referent) . 
1-10 0.10 1.0 0.66-1.7 

11-100 0.17 1.0 0.82-1.2 
101-1000 0.16 1.1 0.95-1.2 

1001+ 0.14 0.95 0.84-1.1 
    

a.  Households were asked to provide a sample of the water that the family was 
drinking at the time of visit.   
b.  Adjusted for clustering within households and for presence of intervention 
(CWP). 

Table 5.12.  Stratum-specific outcome estimates for levels of E. coli in household 
drinking water samples. 
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Figure 5.1.  Map showing locations of provinces and areas included in the study (red 
squares) in Cambodia.  Study households were taken from 13 rural villages in the 
provinces of Kandal, Kampong Chhnang, and Pursat.   Map credit: Jan-Willem 
Rosenboom.
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Figure 5.2.  Percentage of filters remaining in household use as a function of time, with 
time as a categorical variable (6 month increments).   
 
 
 



 

 

235

235

 
 

0 10 20 30 40 50 60 70

Broken (element, tap, or
container)
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Filter cannot meet household
water demand

Water does not require
treatment to be safe

Filter was passed on to
another household 
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Percentage of users reporting reason for disuse (%, n=328)

 
Figure 5.3.  Reasons given by respondents for filter disuse at the time of follow up.   
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Figure 5.4.  Histogram showing the distribution of user-approximated time in use of 
filters not in use at the time of this follow up study (n=317).   
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Sex of household head
Kandal Province

Kampong Chhnang Province
Pursat Province

Living on less than 1 USD per day (self-reported)
Caregiver reports receiving health education

Access to a latrine
Soap present in house (demonstrated)

Caregiver reports washing hands at critical points
Safe household water storage*

Household members observed dipping hands into stored water
Use surface water as PDWS

Use rain water as PDWS
Use well water (any) as PDWS

Use deep ≥10m well water as PDWS
Use shallow well water as PDWS

Time since implementation (6-month blocks)
Household purchased filter (at any price)

Odds ratios (OR) for associations with continued use, controlling for time since implementation; bars are 95% CIs

 
Figure 5.5.  Odds ratio (OR) point estimates (and 95% confidence intervals) for factors associated with continued use of the CWP in 
506 households in Kandal, Kampong Chhnang, and Pursat Provinces, adjusted for time since implementation.  Odds ratios less than 
one are negatively associated with continued use and odds ratios greater than one are positively associated with continued use.   
PDWS = Primary drinking water source (non-exclusive); * Covered household water storage container observed 
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Figure 5.6.  Box-and-whisker plot showing data for total coliform, E. coli, and turbidity (measured in NTU) in all filter influent and 
effluent samples.  Upper and lower points represent maxima and minima, boxes indicate 25th and 75th percentile boundaries, the color 
break within each box represents the median value, and the points are arithmetic means (note log scale).   
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Figure 5.7.  Box-and-whisker plot showing log10 reductions for total coliform, E. coli, 
and turbidity in the CWP.  Upper and lower points represent maxima and minima, boxes 
indicate 25th and 75th percentile boundaries, the color break within each box represents 
the median value, and the points are arithmetic means 
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Figure 5.8.  Box-and-whisker plot for log10 reduction of E. coli in all treated versus untreated water samples by time since 
implementation, coded in 6-month blocks.  Upper and lower points represent maxima and minima, boxes indicate 25th and 75th 
percentile boundaries, the color break within each box represents the median value, and the points are arithmetic means.      
 



 

 

241

241

0 0.5 1 1.5 2 2.5 3

Female interviewee
Person is under 5 years of age

Person is female
Household with more than mean number of people (≥7)

Caregiver has been to school
Living on < US$1 per day (self-reported)

Home has dirt floor
Home has a tile roof

Home is made of brick or cement
Access to sanitation

Feces observed in household at the time of visit
Soap is in the house at time of visit
Animals in the house at time of visit

Caregiver reports practicing handwashing at critical points
Has uncovered storage container at time of visit

Having more than 100 E. coli/100ml in household drinking water
User dips to get drinking water
Using rainwater at time of visit

Using deep well (≥10m) at time of visit
Using shallow well (<10m) at time of visit

Using surface water at time of visit
Using a water source >100m from the house at the time of visit
Using a water source >500m from the house at the time of visit

Kandal Province
Kampong Chhnang Province

Pursat Province

Prevalence proportion ratio (PPR)

 
Figure 5.9.  Association of measured covariates with diarrheal disease in all individuals, adjusted for presence of the intervention 
(CWP) and for clustering of the outcome within households and in individuals over time.  Points are arithmetic means and bars 
represent 95% confidence intervals.     
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Figure 5.10.  Association of measured covariates with diarrheal disease in children under five years of age (0 – 48 months at first 
household visit), adjusted for presence of the intervention (CWP) and clustering within households and in individuals over time.  
Points are arithmetic means and bars represent 95% confidence intervals.    
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CHAPTER 6:  SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1 Summary 

Despite widespread and increasing international attention given household-scale 

water quality interventions, basic gaps in knowledge of the microbiological effectiveness 

and associated health impacts of the technologies limit investment in this method 

increasing access to safe water.   Point-of-use water treatment technologies require a 

sound base of evidence resulting from systematic, rigorous laboratory and field testing 

before they are promoted widely as public health interventions.   

This dissertation contributes to the current knowledge of the potential role of 

locally produced ceramic water filters in improving household drinking water quality and 

reducing diarrheal disease.  These studies are the first to: (i) rigorously evaluate the 

microbiological performance of low-cost ceramic filters in the laboratory and in the field, 

over extended use periods and against a range of environmental waters; (ii) assess the 

impact of the filters on diarrheal disease outcomes in a randomized, controlled trial and a 

prospective cohort study; and (iii) examine the continued use and effectiveness of the 

filters after up to 44 months in field use.  This post-implementation assessment has been 

the first systematic evaluation of any household water treatment intervention after long-

term field use.     

The filter’s demonstrated effectiveness in improving water quality and health 

compares favorably with other proposed point-of-use water quality interventions (Clasen 

et al.  2007).  Specific findings are articulated below.  
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6.2  Conclusions 

6.2.1  Microbiological performance: laboratory and field testing (Chapter 3) 

• The CWP1 and CWP2 significantly reduced surrogates for waterborne bacterial 

and viral pathogens, with a mean of approximately 99% (2 log10) reduction for E. 

coli bacteria (laboratory and field testing) and 90-99% (1 - 2 log10) reduction for 

viruses (laboratory testing only).   

• Laboratory and field reduction of E. coli by filters were comparable.   

• Reduction of E. coli was greater in the CWP1 filter, followed by the CWP2 and 

CWP3 filters in laboratory testing.   

• The CWP1 reduced E. coli in field testing to a marginally greater extent than did 

the CWP2.   

• The reduction of MS2 in laboratory testing was not significantly different 

between filters.   

• The application of silver compounds to CWP-type filters is widely held to 

increase microbiological effectiveness but this was not observed in this study.  

The CWP3, having no application of silver, was observed to be comparable in 

microbiological effectiveness to the CWP1 and CWP2 (with silver amendment).   

• The addition of iron oxide amendments to the base clay before firing (CWP2) did 

not significantly change the microbiological effectiveness of the filters in the 

laboratory or in the field against E. coli or MS2.   

• Effectiveness of filters against the bacterial indicator E. coli was maintained 

during field use conditions over 18 weeks, although statistically significant 

changes in mean reductions over the sample period were observed.    
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• Log10 reductions of E. coli in boiled water samples were comparable to 

performance of the filters over the 18 week field trial.  This finding suggests that 

boiled water may be recontaminated after treatment through improper storage.   

• Reduction of indicators was marginally higher in more turbid waters, both in the 

laboratory and in the field, probably due to either particle association of microbes 

or higher levels of E. coli in field samples with higher turbidity.      

 

6.2.2  Health impacts from a randomized, controlled trial (Chapter 4) 

• The use of either filter resulted in a marked decrease in diarrheal disease during 

the study (49% reduction over the control group by use of the CWP1, 42% 

reduction by use of the CWP2), an effect that was observed in all age groups and 

both sexes after controlling for clustering within households and within 

individuals over time.   

• The CWP1 filter was associated with a substantial reduction in dysentery (61%), 

an effect that was not observed with the CWP2. 

• There was a positive but weak association between E. coli levels measured in 

drinking water and diarrheal disease outcomes, after controlling for presence of 

the intervention.  

 

6.2.3  Continued use and effectiveness (Chapter 5) 

• The rate of filter disuse was approximately 2% per month after implementation, 

due largely to breakages.  There was a strong association between filter use and 

time since implementation.    
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• Controlling for time since implementation, continued filter use over time was 

most closely positively associated with related water, sanitation, and hygiene 

practices in the home, cash investment in the technology by the household, and 

use of surface water as a primary drinking water source.  Continued use of the 

filters was associated with awareness of other water, sanitation, and hygiene 

behaviors and improvements, suggesting possible synergies between CWP 

implementation and successful long-term use by users.   

• Although continued use of the filters was positively associated with cash 

investment, continued use was not observed to be closely related to the price paid.   

• The filters reduced E. coli/100 ml counts by a mean 98% in treated versus 

untreated household water, although demonstrated filter field performance in 

some cases exceeded 99.99%.   

• Microbiological effectiveness of the filters was not observed to be closely related 

to time in use.  Since time in use was not shown to be strongly related to 

performance, recommendations that users replace the ceramic filter elements 

every one or two years (as is current practice) may not be necessary.   

• The filters can be highly effective in reducing microbial indicator organisms but 

may be subject to recontamination, probably during "cleaning" with soiled cloths; 

Recontamination of the filter and storage receptacle through improper handling 

practices is a real threat to the effectiveness of this technology.   

• The filters were associated with an estimated 46% reduction in diarrhea in filter 

users versus non users (PPR: 0.54, 95% CI 0.41-0.71).   
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• No association was observed between measured E. coli in household drinking 

water and diarrheal disease, after adjusting for presence of the intervention and 

clustering within households.   

• Other significant associations were observed with water, sanitation, and hygiene-

related factors that were also measured as part of the study, such as handwashing, 

maternal education, measures of socio-economic status, and access to sanitation, 

after adjusting for the presence of the intervention and for clustering of outcomes 

within households and in individuals over time.       

 

6.3  Research needs and remaining questions 

The production of ceramic water filtration devices at the local level in developing 

countries is made possible by the fact that the necessary materials and knowledge are 

widely available and relatively inexpensive, although adapting these to the production of 

a high quality, low-cost, economic and socially sustainable, and proven device to provide 

safe water and reduce diarrheal disease does require significant innovation and 

investment.  Despite widespread and increasing international attention given household-

scale water quality interventions, basic gaps in knowledge of the microbiological 

effectiveness and associated health impacts of technologies limit investment in this 

method for safe water provision.  More basic research on technologies is needed for these 

interventions to play a major role in providing safe water to the billions of people lacking 

it (Thompson et al.  2003).   Scaling up the manufacture and distribution of the filters to 

households requires a base of evidence from well-designed studies to determine: (i) the 

microbiological effectiveness of the technology against human pathogens and indicators, 
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including application of Environmental Technology Verification (ETV) protocols where 

possible and appropriate; (ii) the health impacts associated with using the technology, as 

assessed using appropriate rigorous epidemiological methods, including blinded, 

randomized controlled trials; and (iii) appropriate and effective large-scale 

implementation strategies to ensure high quality filters are produced within an 

economically sustainable program, resulting in long-term and widespread availability of 

new filters, replacements, parts, and facilitating and supporting expertise.  These points 

for further research are articulated below.     

 

6.3.1  Microbiological effectiveness 

More research is needed on the microbiological effectiveness of the CWPs both in 

the laboratory and in the field.  Although filters performed well based on two bacterial 

indicators in this study, the performance of the filters in reducing viruses, protozoan 

parasites, and potentially important bacterial pathogens has not been adequately 

characterized.  Evidence suggests that filter effectiveness may be improved through 

systematic testing and optimization of key parameters, such as: pore size, flow rate, base 

clay, burnout material, and microbiocidal surface treatments or additives.  Because each 

manufacturer of CWPs in Cambodia and worldwide uses different materials and QA/QC 

procedures, effectiveness is also likely to vary, potentially considerably (Van Halem 

2006).  Each CWP program will thus need to perform adequate testing of filters before 

field implementation to ensure users are protected.  Although standardized protocols for 

microbiological testing of household-scale water treatment devices do exist and are 

applied in wealthy countries (e.g., USEPA 1987; NSF 2002), these have not been widely 
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used in developing countries due to resource limitations and other reasons.  There is a 

WHO-led effort now to introduce flexible, standardized criteria for water treatment 

technology testing with specific application in developing countries and in harmony with 

the WHO risk-based framework for drinking water quality as articulated in the 

Guidelines for Drinking Water Quality, 3rd Ed. (WHO 2006).  Such protocols, combined 

with new and less expensive water testing procedures for indicators (e.g., Love and 

Sobsey 2007; Mattelet 2005), will enable performance verification by users, 

implementers, and regulators in resource-limited settings. 

 

6.3.2  Health impacts 

More research is needed on the health impacts of the CWPs.  Specifically, 

randomized, controlled, blinded intervention trials should be performed in order to assess 

the effectiveness of the CWPs in reducing diarrheal diseases.  The studies described here 

may be subject to reporting bias and selection bias, which can be further minimized 

through appropriately-designed trials that include a placebo filter and randomized 

treatment arms.  Because health impacts may vary from population to population, several 

studies may be needed to adequately characterize the effectiveness of the intervention on 

diarrheal and other waterborne diseases among users.   

 

6.3.3  Scaling up 

More research is needed on appropriate scale-up strategies that will increase 

coverage of water quality interventions to reduce the burden of disease in developing 

countries.  A better understanding of the socio-cultural, economic, and practical 
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limitations to use of technologies is critical.  Methods for achieving positive behavior 

change through marketing and education may be highly context-specific.  Local research 

is necessary before or concurrent with the inception of household water treatment 

intervention programs.  Appropriate and effective implementation strategies can help 

ensure high quality filters are produced within an economically sustainable program, 

resulting in long-term and widespread availability of new filters, replacements, parts, and 

facilitating and supporting expertise.   

 

6.3.4  Long-term follow up to assess sustainability 

This dissertation describes one long-term follow up study of locally produced 

ceramic filters in field use (Chapter 5). Point-of-use water treatment and safe storage 

interventions can greatly benefit from such systematic post-project appraisals (PPAs) to 

determine successes, failures, and challenges that will inform current and future efforts.  

To date, no standard method has been used by implementers of household water 

treatment.   Unfortunately, looking back at previous projects to assess performance has 

not been a priority in the water and sanitation sector, perhaps as the problems of safe 

water and sanitation access are so urgent the focus remains, justifiably, on new 

interventions and expansion of programs.   While increasing coverage of interventions is 

important in increasing global access to safe water, critical program evaluation can 

ensure that interventions are working to protect users from waterborne disease.   

Good PPAs use standard or other easily interpretable measures for purposes of 

comparison and include a representative sample from the target population.  They may 

also be led by an entity independent of the implementer, which can make the study more 
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objective for the organization and potentially more credible to outside observers.  For 

POU water quality interventions, objective PPAs should assess water quality 

improvements at critical points between the source water and consumption, health 

impacts at the household and population level, and sustainability of the intervention 

through measurable uptake and use rates and in relation to economic, environmental, and 

socio-cultural criteria.   
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