DESIGN OF BIOGAS PLANT

Bio-gas Project, LGED

1.1 Introduction:

Biogas can be obtained from any organic materials after anaerobic fermentation by three main phases.

1.2 Mechanism of biogas fermentation:

A) Groups of Biogas microbes-

B) Groups of microbes involved in the 3 stages of biogas fermentation-1st stage: Fermentative bacteria-

2nd Stag	2nd Stage: Hydrogen producing acetogenic bacteria-						
	Decompose the substances produced in 1 st stage		Acetic acid, H_2 , CO_2				

<u>3rd Stage: Methane produ</u>	cing bacteria-		
Convert the substances produced in 1 st & 2 nd stage		CH ₄ & CO ₂	

1.3 Design perameter:

A) Selection of materials :

B) Total solid (TS) contains calculations of organic materials Organic materials-

Solid part : Total solid contained in a certain amount of materials is usually used as the material unit to indicate the biogas- producing rate of the materials. Most favourable TS value desired is 08%

Liquid part : As per Annexure-I

C) Favourable temperature, P^H value & C/N ratio for good fermentation-

Temperature: Mesophilic; 20° c to 35° c (Annexure-II). **P**^H value : Neutral **P**^H and ranges 6.8 to 7.2 **C/N ration :** Ranges from 20:1 to 30:1 (Annexure-VI) D) Table showing discharge per day, TS value of fresh discharge and water to be added to make favorable TS condition-

Kinds	Body weight (kg)	Discharge per day (kg)	TS value of fresh discharge (% by wt.)	Water to be added with fresh discharge to make the TS value 8% (kg)
Human	50	0.5	20	0.75
Cow	200	10	16	10
Chicken	1.5	0.1	20	0.15
Pig	50	5	20	7.5

E) Hydraulic retention time (HRT)-

For Mesophilic digestion where temp. varies from 20° c to 35° C and HRT is greater than 20 days.

1.4 Relationship between temperature, HRT & TS value of 8% :

1.5 Cross-section of a digester:

a) Volume of gas collecting char	mber = Vc
b) Volume of gas storage chamb	per = Vgs
c) Volume of fermentation cham	ber $= V_f$
d) Volume of hydraulic chamber	= V _H
e) Volume of sludge laver	= Vs

e) Volume of sludge layer

Total volume of digester $V = Vc+Vgs+V_f+Vs$

1.6 Geometrical dimensions of the cylindrical shaped biogas digester body:

1.7 Assumptions:

For volume	For geometrical dimensions
$Vc \le 5\% V$	D=1.3078 X V ^{1/3}
Vs ≤ 15% V	$V_1 = 0.0827 D^3$
$Vgs + V_f = 80\% V$	$V_2 = 0.05011 D_2^3$
$Vgs = V_H$	$V_3 = 0.3142 D^3$
$Vgs = 0.5 (Vgs + V_f + Vs) K$	R ₁ = 0.725 D
Where K = Gas production rate per	R ₂ = 1.0625 D
m ³ digester volume per day.	$f_1 = D/5$
For Bangladesh $K = 0.4$	$f_2 = D/8$
m ³ /m ³ d.	$S_1 = 0.911 D^2$
	$S_2 = 0.8345 D^2$

1.8 Volume calculation of digester and hydraulic chamber:

A)Volume calculation of digester chamber-

Given : 6 cows of body weight 200 Kg each. Temp. = 30° C (average) Solⁿ: Let HRT = 40 days (for temp. 30° C) Total discharge = 10 kg X 6 = 60 Kg/day TS of fresh discharge = 60 kg X 0.16 = 9.6 Kg. In 8% concentration of TS (To make favourable condition) 8 Kg. Solid = 100 Kg. Influnt 1 Kg. Solid = 100 Kg. Influent 9.6 Kg Solid = 100 x 9.6/8 = 120 Kg. Influent. Total influent required = 120 Kg. Water to be added to make the discharge 8% concentration of TS =120 Kg - 60 Kg. = 60 Kg. Working volume of digester = Vgs + V_f

Vgs + Vf = Q.HRT
= 120 Kg/day X 40 days
= 4800 Kg. (1000 Kg = 1 m³) = 4.8 m³.
From geometrical assumptions:
Vgs + V_f = 0.80 V
Or V= 4.8/0.8 = 6.0 m³. (Putting value Vgs + Vf = 4.8 m³)
& D = 1.3078 V^{1/3} = 2.376 m
$$\cong$$
 2.40 m.
Again
 $V_3 = \frac{3.14 \times D^2 \times H}{4}$
(Putting V₃=0.3142D³)
 $Or, H = \frac{4 \times 0.3142 \times D^3}{3.14 \times D^2} = 0.96m$

Say H = 1.00m

Now we find from assumption as we know the value of 'D' & 'H'

= D/5 = 2.40 /5 = 0.480 m f₁ f_2 = D/8 = 0.30m $\begin{array}{ll} R_{1} &= 0.725 \text{ D} = 1.74 \text{ m} \\ R_{2} &= 1.0625 \text{ D} = 2.55 \text{ m} \\ V_{1} &= 0.0827 \text{ D}^{3} = 1.143 \text{ m}^{3} \\ \text{Vc} &= 0.05 \text{ V} = 0.3 \text{ m}^{3} \\ \end{array}$

Now the dimension of digester chamber is kown & drawn below-

B) Volume calculation of hydraulic chamber-

From assumptions:

 $Vc = 0.05 V = 0.3 m^3$ Vgs = 0.50 x (Vgs + V_f + Vs) x K (Where K = Gas production rate per m³digeste vol./day) = 0.5 x 5.7x 0.4 =1.14 m³ (A) $= 0.5 \times 5.7 \times 0.4 = 1.14 \text{ m}^3$ (A) Again, Vgs = 50% of daily gas yield = 0.5 x TS x gas producing rate per Kg TS = 0.5 x (60 kg x 0.16) x 0.28 m³/kg TS (See Annex- III) = 1.344 m³ ---------- (B) From **A & B** let Vgs = 1.344 m³. $Vc + Vgs = 0.3 m^3 + 1.344 m^3 = 1.644 m^3$ $V_1 = [\{(Vc + Vgs) - \{\pi D^2 H_1\}/4] = [1.644 - \{3.14 \times (2.4)^2 \times H_1\}/4]$ Again Or, $H_1 = 0.110m$ We have fixed h = 800 mm water volume (I mm = 10 N/m²) $h = h_3 + f_1 + H_1$ Or, $h_3 = 0.210m$. Again we know that Vgs = V_H Or, 1.344 m³ = 3.14 x $(D_H)^2$ x h₃/4 Or, $D_{H} = 2.85m$

Now we know the dimension of hydraulic chamber. Moreover keeping h = 800 mm, we can choose or re-arrange the dimension considering availability of site and construction suitability. For most suitable dimensions we can select the drawing of Annexure- IX for 60 Kg cow dung per day as raw material.

Note: For ready reference 4 family type Biogas plant's drawing is shown(standared dimension's) in Annexure-VIII, Annexure-IX, Annexure-X & Annexure-X1 where 40 Kg, 60Kg, 80Kg and 100Kg cow dung is considered as raw marterial per day respectively. If bigger size plant is required ,it can be designed keeping all safety considerations in design and construction.

Annexure-1

Materials	Dry matter content (%)	Water content (%)
Dry rice straw	83	17
Dry wheat straw	82	18
Corn stalks	80	20
Green grass	24	76
Human	20	80
excrement		
Pig excrement	18	82
Cattle excrement	17	83
Human Urine	0.4	99.6
Pig Urine	0.4	99.6
Cattle Urine	0.6	99.4

TABLE-1: THE TOTAL SOLID CONTENT OF COMMON FERMENTATIONMATERIALS IN RURALAREAS (APPROXIMATELY)

Annexure-II

TABLE-2: BIOGAS-PRODUCING RATES OF SOME COMMON FERMENTATION MATERIALS ATDIFFERENT 2 2 2 2

TEMPERATURES (m³/Kg TS)

Materials	Medium temperature (35° C)	Ordinary temperature $(8^{\circ} \sim 25^{\circ} \text{ C})$
Pig manure	0.45	0.25 ~ 0.30
Cattle dung	0.30	0.20 ~ 0.25
Human wastes	0.43	0.25 ~ 0.30
Rice straw	0.40	0.20 ~ 0.25

Wheat straw	0.45	0.20 ~ 0.25
Green grass	0.44	0.20 ~ 0.25

Experimental conditions:- The fermentation period of the excrement materials lasts

60 days and that of the stalk type lasts 90 days. The fermentation material concentration (total solid content) is 6%.

Annexure- III

TABLE-3: BIOGAS PRODUCING RATES OF SOME FERMENTATIONMATERIALS AND THEIR MAIN CHEMICAL COMPONENTS.

Materials and their main components	Yield of Biogas m³/kg TS	Methane content (%)
Animal barnyard	0.260 ~ 0.280	50 ~ 60
manure		
Pig manure	0.561	
Horse droppings	0.200 ~ 0.300	
Green grass	0.630	70
Flax straw	0.359	
Wheat straw	0.432	59
Leaves	0.210 ~ 0.294	58
Sludge	0.640	50
Brewery liquid waste	0.300 ~ 0.600	58
Carbohydrate	0.750	49
Liquid	1.440	72
Protein	0.980	50

Annexure-IV

TABLE-4 BIOGAS- PRODUCING RATES OF SEVERAL SUBSTANCES

Material	YpCMDV (m ³ /m ³ d)	YpKgM (m³/KgTS)	Amount of biogas produced in a period of time (as a % of the total yield)			riod
			0~15 (d) 15~45 (d) 45~75(d) 7			75
						~
						13
						(d)
Preparing this training material all the important information have been collected from the booklets & research						
materials of Biogas Trainin	ng Center (BRC)	Chendu, Sichuan	, Chaina.		Page-9	

Water Hyacinth	0.40	0.16	83	17	0	0
Alligator Weed	0.38	0.20	23	45	32	0
Water Lettuces	0.40	0.20	23	62	15	0
Cattle Dung	0.20	0.12	11	33.8	20.9	34
						.3
Pig Manure	0.30	0.22	19.6	31.8	25.5	23
						.1
Human Wastes	0.53	0.31	45	22	27.3	5.
						7
Dry Grass	0.20	0.21	13	11	43	33
Rice Straw	0.35	0.23	09	50	16	25

Note: - The fermenting temperature is 30° C. It is batch-fed fermentation. YpCMDV refers to the average yield of biogas per cubic meter of the digester volume during the period of normal fermentation (m^3/m^3 d) YpkgM refers to the yield of biogas per kilogram of the fermentation material (m^3/kg TS)

Annexure-V

TABLE-5 : THE SPEED OF BIOGAS PRODUCTION WITH COMMON FERMENTATIONMATERIALS.

Speed	Amou (expre bioga	unt of essed is)	bioga as a	s prod percer	uced ntage	in a p of the	eriod of total yie	time eld of	Biogas Producing rate
Time(d)	10 90	20	30	40	50	60	70	80	(m³/kg TS)
Materials									
Human	40.7	81.5	94.1	98.2	98.7	100			0.478
wastes	*	*	**						
Pig	46.0	78.1	93.9	97.5	99.1	100			0.405
manure	*	*	**						
Green	-	-	-	98.2	-	100			0.410
grass				**					
Cattle	34.4	74.6	86.2	92.7	97.3	100			0.300
dung	*	*		**					
Wheat	8.8	30.8	53.7	78.3	88.7	93.2	96.7	98.9	0.435
straw	100								
			*	**		**			

* Biogas production is at the highest speed.

** Amount of Biogas produced to more than 90% of the total yield of a fermentation period. Experimental conditions: - Fermenting temperature 35°C, the total length of fermentation period being

60 days for the excrement material and 90 days for the stalk type, the materials concentration; total solid content of the fermentative fluid being 6%.

ANNEXURE- VI

TABLE -6. CARBON-NITROGEN RATIOS OF SOME COMMON FERMENTATION MATERIALS (APPROX.)

Material	Carbon	Nitrogen content of	Carbon-
	content of	materials(%)	nitrogen
	material (%)		ration
			(C/N)
Dry wheat straw	46	0.53	87:1
Dry rice straw	42	0.53	67:1
Corn stalks	40	0.75	53:1
Fallen leaves	41	1.00	41:1
Soybean stalks	41	1.30	32:1
Wild grass	14	0.54	27:1
Peanut stems and	11	0.59	19:1
leaves			
Fresh sheep	16	0.55	29:1
droppings			
Fresh cattle dung	7.3	0.29	25:1
Fresh horse	10	0.42	24:1
droppings			
Fresh pig manure	7.8	0.60	13:1
Fresh human wastes	2.5	0.85	29:1

ANNEXURE- VII

TABLE-7 AMOUNT OF HUMAN AND ANIMAL WASTES DISCHARGED PER DAY (APPROX.)

Kinds	Body weight	Daily amount of	Daily amount	Annual amount of	Annual amount of	Daily yield of biogas per
	(kg)	excrement	of urine	excrement	excrement	capita (m3)
		(kg)	(kg)	discharged	collection	
				(kg)	(kg)	
Pig	50	6	15	2190	1752	0.18 ~ 0.25
Ox	500	34	34	12410	9928	0.36 ~ 0.96
Horse	500	10	15	3650	2920	
Sheep	15	1.5	2	548	438.4	
Chicke	1.5	0.10	0	36.80	29.44	0.0076 ~
n						0.0112
Huma	50	0.50	1	182.50	146.00	0.028
n						

Note: The annual amount of excrements collected accounts for 80% of that discharge.