

Experiences, prerequisites and limitations of on-site sanitary systems used in northern Finland

Pekka M. Rossi Assistant professor, University of Oulu, Finland pekka.rossi@oulu.fi

Content

- References
- Governance and management issues of On-Site systems in Finland
- Research results from cold climate study
 in Finland and Sweden

Source Vuokko Laukka, Juho Kinnunen, Elisangela Heiderscheidt

References

ON-SITE-project

Small-scale wastewater treatment systems: governance, efficiency, resources recovery, environment contamination risks and innovative solutions for processes optimization

- University of Oulu UOULU, Oulu Finland
- Water Energy and Environmental Engineering
- Luleå University of Technology LTU, Luleå, Sweden
- Department of Civil, Environmental and Natural Resources Engineering
- Finnish Environment Institute SYKE, Laboratory Centre
- Freshwater Centre and Centre for Sustainable Consumption and Production, Finland

Factors affecting effluent quality in on-site wastewater treatment systems in the cold climates of Finland and Sweden

Juho Kinnunen $^{a,*},$ Pekka M. Rossi $^{\rm a},$ Inga Herrmann $^{\rm b},$ Anna-Kaisa Ronkanen $^{\rm a,c},$ Elisangela Heiderscheidt $^{\rm a}$

N2

On-site systems in Finland and requirements (Laukka et al. 2022)

- In general, all single property owners having a wastewater treatment system at the site are considered operators of an on-site sanitation system
- Also systems of several properties, holiday resorts, schools etc. up to 100 PE
- Most common system septic tank (common solution from previous decades during prior legislation)
- Current treatment requirements similar to Sweden and Norway
- Note: distances can be long, but road network broad

	Level of requirement	BOD ₇ ^{a)} (%)	P _{tot} (%)	N _{tot} (%)
Finland	Standard	80	70	30
	High	90	85	40
Sweden	Standard	90	70	not regulated
	High	90	90	50
Norway	Less sensitive ^{b)}	-	-	not regulated
	Normal	70	60	not regulated
	Sensitive ^{c)}	70 / 90	90	regulated according to location ^{d)}

	Finland
Population in 2020 (millions)	5.53
Average population density (persons/km²) ^{a)}	18.1
Population living outside sewer network (%)	15
Number of properties (permanent habitation) outside sewer network	286,000 ^{b)}
Number of leisure homes	441,000 ^{b)}
Proportion of treatment units not fulfilling the treatment requirements (%)	55–67 ^{c)}
Most used treatment systems (%)	Permanent habitation
Septic tanks with no secondary treatment	42
Sand filter	13
Infiltration system	
Package plant	5
Holding tank	2
Others / not specified	38

Finnish management system and legislation

- Original legislation from 1960s and update in 2004
- So-called "faeces-law", where requirements for On-Site systems were tightened
- Somewhat unsuccessful implementation: became a target for populistic political discussion
- Requirements for updated on-site systems were seen expensive in rural region, legislation was watered down (e.g. only for new houses, renovated houses, houses 100 m from lake or river)
- Management under ministry of environment, implementation by municipalities
- Issues with monitoring: permits from building authorities (municipal), supervision from environmental authorities (more regional)

Finnish management system and legislation

- Original legislation from 1960s and update in 2004
- So-called "faeces-law", where requirements for On-Site systems were tightened
- Somewhat unsuccessful implementation: became a target for populistic political discussion
- Requirements for updated on-site systems were seen expensive in rural region, legislation was watered down (e.g. only for new houses, renovated houses, houses 100 m from lake or river)
- Management under ministry of environment, implementation by municipalities
- Issues with monitoring: permits from building authorities (municipal), supervision from environmental authorities (more regional)

Factors Affecting Effluent Quality In On-site System: Research questions

- 1) How does effluent water quality vary across system and process types and how does it compare to regulated discharge limits?
- 2) Does unit age, load and local climate conditions affect effluent water quality of soil-based systems and package plants differently?
- 3) Does the type of biological and P-targeting processes used significantly affect effluent water quality?

- 9 different scale National projects
- 1300 sampling occasions
 - >300 units
 - Emphasis in Southern parts of countries

- UERRA regional reanalysis for Europe on single levels from 1961 to 2019, 11 km x 11 km
- Temperature, Precipitation, Snow water equivalent
 - What was weather like prior sampling? (7 & 30 days)

Results: Weather factors

Autumn most sampled

- >75% sampling days >0 °C
- semi-new, working units (75% less than 6 years old)
- BOD₇ was removed well
- Tot-P regulations were not met by 28% and 25.4% of Finnish and Swedish units

Results: Biological process

- No significant effect of temperature or dilution due to precipitation was found either on PP or SBS
- Correlation of air and water temperature
- Not much data on very cold conditions
- Age was a factor in effluent P increase in SBS but not in PP

Results: Biological process

- P-coagulant and P-filters had lower P concentration in effluents in contrast to sand filters
- SBS had more stable BOD₇ removal (narrower distribution)
- Type of biological process did not have a significant effect on N-removal

Conclusions

- Lessons learnt from management structures and how they can effect e.g. on surveillance and data collection
- Importance of legislation work and risks
- Weather factors (air temperature, precipitation, and snowmelt) in either soil-based systems (SBS) or package plants (PP) did not correlate with effluent quality
- Found biases in data which can affect conducted tests and conclusion
 - Selection of units
 - Seasonality of sample collection
 - Geographical distribution
- More data on cold conditions and a more random snapshot campaign of any given system for more realistic results of the current condition?

Thank you!

المراجع ال