Worksheet Module 4 Week 3C: Design technology systems for water recovery

1.	What should be the treatment objectives in terms of organic, nutrient and pathogen reduction?
••••••	
2.	What suitable technologies are available locally for the proposed RRR intervention?

What is the leve						
Are there resour	ce constraints	related to lab	our, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	our, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	our, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	our, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	rce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	rce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	rce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	ce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?
Are there resour	rce constraints	related to lab	oour, land, e	nergy or othe	er factors of	production?

٥.	. Are the required technologies,	finance,	regulations	and	incentive	mechanisms	available t	0
	support timely repair and mainter	nance?						

6.	. Design your wastewater treatmer	nt system	1:					
				nption	3.7	C	0.0	
-			,					
	Calculate wastewater inflow (m3/	u) ——	$1000 (L/m^3)$		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (m3/	d) —	1000 (L/m ³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (ms/	d)	1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (m3/	a)	1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (ms/	a)	1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (ms/	d)	1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater Inflow (III3/		1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater innow (ms/		1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (ms/		1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater Inflow (III3/		1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater inflow (ms/		1000 (L/m³)		× Numbe	er of persons	× 0.8	
	Calculate wastewater innow (ms/		1000 (L/m³)		× Numbe	er of persons	× 0.8	

Determine the influent characteristics:

PARAMETERS	CONCENTRATION (mg/L) *
Total solids	
Suspended solids	
Dissolved solids	
Organic Matter, BOD ₅	
COD	
Total Nitrogen	
Phosphorus	
E. coli	

Reference:

PARAMETERS	CONCENTRATION (mg/L) * RANGE	CONCENTRATION (mg/L) * TYPICAL IN DEVELOPING COUNTRIES
Total solids	700 - 1350	1100
Suspended solids	200 - 450	350
Dissolved solids	500 - 900	700
Organic Matter, BOD₅	250 - 400	300
COD	450 - 800	600
Total Nitrogen	35 - 60	45
Phosphorus	4 - 15	7
E. coli	10 ⁶ – 10 ⁹ (org/100ml)	10 ⁷ (org/100ml)

Determine the effluent characteristics:

PARAMETERS	CONCENTRATION (mg/L) *
Value of SS (mg/L)	
BOD (mg/L)	
Nitrogen (mg/L)	
Phosphorus (mg/L)	
E. coli (org/100mlL)	
 Select the treatment 	technology:

•	Determine size of each step: Volume (m3) and surface (m2) $\frac{Volume (m^3)}{Depth (m)} = Surface (m^2)$