Water Pollution
Published on SSWM (http://www.sswm.info/)

Icon

Water Pollution

Compiled by:
Stefanie Keller (seecon international gmbh)

Water is essential for all aspects of life and the defining feature of our planet. In some regions of the world, rivers and seas have become so polluted that ecosystems and the health of plants, animals, and humans are heavily threatened. Water pollution occurs when nutrients and other materials are released, degrading the quality of the water for other users. Water pollution includes all of the waste materials that cannot be naturally broken down by water. The disposal of untreated wastewater strongly contributes to the global water pollution we are facing nowadays. Recycling domestic, agriculture and industrial wastewater together with efficient wastewater management can help reducing water pollution around the world (CORCORAN et al. 2010). Besides wastewater, there are various other factors which cause water pollution such as marine dumping and oil pollution. Only implementing adequate political, legal and economic instruments as well as global co-operation can contribute to improve global water quality.

Introduction

The world is confronted with a global water quality crisis. The continuing growth of population growth and urbanisation, rapid industrialisation, and expanding and intensifying food production are all putting pressure on water resources and increasing the unregulated or illegal discharge of contaminated water within and beyond national borders (CORCORAN et al. 2010).

Water is essential for all aspects of life and the defining feature of our planet. About 97.5% of all water is found in the oceans and of the remaining freshwater only one percent is accessible for extraction and use. Functioning and healthy aquatic ecosystems provide us with a dazzling array of benefits — food, medicines, recreational amenity, shoreline protection, processing our waste, and sequestering carbon (CORCORAN et al. 2010).

unep ny water pollution

Water pollution has various causes and sources. Source: CORCORAN et al. (2010)

In some areas of the world, rivers, lakes and seas have become so polluted that ecosystems and the health of plants, animals, and humans are threatened. Pollution from agriculture, industry and domestic wastewater is making water resources, both surface water and groundwater, increasingly scarce and decreasingly poor in quality (DOPP n.y.).

In recent years, many nations have realised the problem of increasing water pollution. Some of these nations are taking steps to control or clean up the polluted waters ― yet, it remains a problem that is not tackled in many areas of the world.

Water pollution can come from several of different sources. If the pollution comes from a single source, such as an oil spill, it is called point-source pollution. If the pollution comes from many sources, it is called nonpoint-source pollution. Most types of pollution affect the immediate area surrounding the source. Sometimes the pollution may affect the environment hundreds of miles away from the source, such as nuclear waste; this is called transboundary pollution (WATER POLLUTION GUIDE 2008).

Every day, 2 million tons of sewage, industrial and agricultural waste is released into the world’s water. The United Nations estimates that the amount of wastewater produced every year is about 1,500 km3, six times more water than exists in all the rivers of the world (PACIFIC INSTITUTE 2010).

What is Water Pollution?

(Adapted from SDWF 2008)

Water pollution can be defined in several ways. Water pollution occurs when nutrients and other materials are released, degrading the quality of the water for other users. Water pollution includes all of the waste materials that cannot be naturally broken down by water. In other words, anything that is added to the water, above and beyond its capacity to break it down, is pollution. Pollution can be caused by nature itself, such as when water flows through soils with high acidity. But much more often, human actions are responsible for the pollutants that enter the water.


Wastewater’s Impact on Water Pollution

unep ny in corcoran

Water pollution caused through the untreated disposal of industrial wastewater. Source: CORCORAN et al. (2010)

(Adapted from CORCORAN et al. 2010)

The way food is produced worldwide uses 70–90% of the available fresh water, returning much of this water to the system with additional nutrients and contaminants. It is a domino effect as downstream agricultural pollution is joined by human and industrial waste. This wastewater is polluting freshwater and coastal ecosystems, threatening food security, access to safe drinking and bathing water and providing a major health and environmental management challenge. Up to 90% of wastewater flows untreated into the densely populated coastal zone contributing to growing marine dead zones. A staggering 80–90% of all wastewater generated in developing countries is discharged directly into surface water bodies.

Contaminated water from inadequate wastewater management provides one the greatest health challenges restricting development and increasing poverty through costs to health care and lost labour productivity. Unregulated discharge of wastewater threats and decreases biological diversity, natural resilience and the capacity of the planet to provide fundamental ecosystem services, impacting both rural and urban populations and affecting sectors from health to industry, agriculture, fisheries and tourism. In all cases, it is the poorest that are the most severely affected.
Wastewater management — or rather the lack of it — has a direct impact on the biological diversity of aquatic ecosystems, disrupting the fundamental integrity of our life support systems, on which a wide range of sectors from urban development to food production and industry depend. It is essential that wastewater management be considered as part of integrated, ecosystem-based management that operates across sectors and borders, freshwater and marine.

Reducing Water Pollution through Wastewater Recycling

(Adapted from CORCORAN et al. 2010)

Wastewater has long been used as a resource in agriculture. The use of contaminated water in agriculture for irrigation and fertilising purposes can be managed through the implementation of various barriers which reduce the risk to both crop viability and human health. Today, an estimated 20 million hectares of land is irrigated using wastewater worldwide, particularly in arid and semiarid regions and urban areas where unpolluted water is a scarce resource. There are clear health advantages related to wastewater use in agriculture, stemming directly from the provision of food (mainly vegetables) to urban populations. It is estimated that 10% of the world’s population relies on food grown with contaminated wastewater.

Recognising wastewater as a resource has a huge positive impact on the outcome of agriculture production and reduces the water pollution by preventing the disposal of contaminated wastewater into water bodies. Reusing wastewater in agriculture can also integrate wastewater produced in industries (see also optimisation of water use in industry or in agriculture). Furthermore, the industrial sector can also reuse its own generated wastewater for various processes within its production and therefore prevent water pollution by releasing untreated wastewater into water bodies. Reusing wastewater has therefore two main advantages: it improves the living conditions of the local population through better food production and reduces the water pollution in these areas (see also recharge and reuse).

As water is extracted and used along the supply chain, both the quality and quantity of water is reduced. Source: CORCORAN et al. (2010)

Reducing Water Pollution through Efficient Wastewater Management

(Adapted from CORCORAN et al. 2010)

Under-dimensioned and aged wastewater infrastructure is already overwhelmed, and with predicted population increases and changes in the climate the situation is only going to get worse. Without better infrastructure and management, millions of people will continue to die each year and there will be further losses in biodiversity and ecosystem resilience, undermining prosperity and efforts towards a more sustainable future.

Currently, most of the wastewater infrastructure in many developing countries and fastest growing cities is either non-existent, inadequate or outdated and therefore entirely unable to keep pace with the demands of rising populations. Experience has shown that substantial investments done in the right manner can provide the required returns (see economic issues. However, finding a solution will require not only investment but also carefully integrated national to municipal water and wastewater planning that addresses the entire water chain — drinking water supply (see water sources, production and treatment of wastewater, ecosystem management, agricultural efficiency and urban planning.

Wastewater management has many associated environmental benefits, enabling ecosystems within watersheds and the productive coastal zone to thrive and deliver services on which healthy communities and economies depend. Inadequate management in turn incurs heaving costs, threatening to undermine these ecosystems. However the value of these benefits is often not calculated because they are not determined by the market, due to inadequate property rights, the presence of externalities, and the lack of adequate information. Valuation of these benefits is nevertheless necessary to justify suitable investment policies and financing mechanisms (see also policies and legal framework).

Further Causes of Global Water Pollution

(Adapted from WATER POLLUTION GUIDE 2008)

Besides the global water pollution caused by inadequate wastewater management, there are other factors which contribute to the global water pollution:

Responses to Water Pollution

(Adapted from KRAEMER et al. 2001)

Political approaches: Ineffective regulatory oversight, institutional failures and lack of political commitment are often mentioned as some of the most significant causes of water pollution problems. Therefore, a critical step towards the protection of water resources is the creation of will and commitment among political parties at all levels, to seriously invest human and financial capital in the protection of freshwater and related ecosystems and to consider the polluter pays principle in all relevant water policy formulation.

Legal Instruments: Legal instruments, so-called command and control strategies have been used widely over the past 20 years and still remain important in several high-income as well as developing countries. The approach of command and control, however, is yielding fewer benefits per unit of expenditure in some industrialised countries, while developing countries often lack the necessary preconditions for implementing pollution control measures (see also enforcement). Even where court orders have sentenced closure of polluting industries, these often have silently reopened for economic and employment reasons. In some cases, the effectiveness of traditional enforcement measures such as inspections and penalties has been successfully strengthened through combination with other instruments such as public disclosure programmes and economic instruments.

Economic Instruments: A shift to economic market based instruments to combat water pollution is being experienced. Water charges are one of the most frequently used economic instruments and should be high enough to effectively induce changes in behaviour and foster preventive measures. It is recommended that such measures should be phased in gradually to take due account of the social and economic implications. An immediate response to high charges is not as easy to achieve in lower income countries as in industrialised ones. On the other hand, the effect of charges set at a fairly low level, as in some European countries in transition, is questionable. In this case, charges are low due to the present low economic status and the state of industry. Water pollution cannot be addressed by price and market-based schemes alone. Experience points to the combination of planning, regulation (e.g. monitoring) and economic instruments (e.g. charges, tradable permits). The existence of direct regulations appears to be a necessary pre-condition for the successful implementation of economic instruments (see also policies and legal framework).

Co-operation: Several examples of co-operation among stakeholders such as bilateral agreements, river commissions, water pollution control through public information and participation and co-operation between private companies and local stakeholders. The involvement of user and community-based organisations, which are expressions of civil society, is also increasingly recognised as a central principle in the protection of water resources. In this context, water user associations and farmer groups need to be properly trained and included in the debate.

Paradigm Shift: Single sector approaches such as wastewater treatment or river basin management are limited in their actions. To save and recycle water, regain resources and to protect aquatic ecosystems, the whole water cycle needs to be taken into account in an integrated, holistic way – linking up reuse-oriented sanitation approaches with IWRM. See SSWM concept.

References

CORCORAN, E. (Editor); NELLEMANN, C. (Editor); BAKER, E. (Editor); BOS, R. (Editor); OSBORN, D. (Editor); SAVELLI, H. (Editor) (2010): Sick Water? The central role of wastewater management in sustainable development. A Rapid Response Assessment. United Nations Environment Programme (UNEP), UN-HABITAT, GRID-Arendal. URL [Accessed: 05.05.2010].

DOPP (Editor) (n.y.): TED Analysis Cases. Sea Water Pollution - Cases Analysis. Washington: American University. URL [Accessed: 28.09.2010].

KRAEMER, A.; CHOUDHURY, K.; KAMPA, E. (2001): Protecting Water Resources: Pollution Prevention. (= Thematic Background Paper). International Conference on Freshwater in Bonn. URL [Accessed: 21.04.2012].

PACIFIC INSTITUTE (Editor) (2010): World Water Quality Facts And Statistics. Oakland: Pacific Institute. URL [Accessed: 28.09.2010].

SDWF (Editor) (2008): Water Pollution. Saskatoon: Safe Drinking Water Foundation. URL [Accessed: 28.09.2010].

WATER POLLUTION GUIDE (Editor) (2008): Types of Water Pollution. URL [Accessed: 28.09.2010].

WIKIPEDIA (Editor) (2010): The Great Pacific Garbage Patch. URL [Accessed: 28.10.2010].

For further readings, case studies, awareness raising material, training material, important weblinks or the related powerpoint presentation, see www.sswm.info/category/background/background/background/environmental-issues/water-pollution